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Abstract
We consider the issue of income distribution modeling in the context of poverty analysis

based on computable general equilibrium micro-simulation models. Specifically, we study the
situation where a poverty index of the FGT class is used to measure the impact of a given
policy on the level of poverty in a population, which usually implies computing the chosen
index in the pre and post simulation samples. The empirical distribution function (EDF) is
by far the most commonly used estimator in practice. It is, however, not the only available
consistent estimator and there may be situations in which a different estimator would be able
to provide more accurate results.
An alternative that solves this problem is to use a smooth estimator of the population income
distribution. Broadly speaking, two types of such estimators are available: parametric and
nonparametric ones. In the first case, one has to chose a particular parametric form for the
distribution function and estimate its parameters. The main drawback of this approach is
the difficulty associated with the selection of the functional form, which must be done so
as to balance finite sample bias and variance. The nonparametric approach sidesteps this
functional form issue by using kernel density estimators that only impose mild restrictions on
the distribution function. This is obviously an important advantage, but its cost is that the
accuracy of these estimators typically depends to a large extent on the bandwidth used in the
kernel function. Another advantage of the nonparametric kernel approach is that is nests the
EDF as a special case.
We propose to extend the work of Boccanfuso et al. [2008] in two ways. First, we consider
a larger set of parametric functions, including the 5 parameter generalized beta distribution
and some of its special cases. Second, we use non-parametric kernel estimators and study
their accuracy under different bandwidth selection schemes. Lastly, we provide Monte Carlo
comparisons of the accuracy of these methods with the widely used EDF.
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1 Introduction

Traditionally, computable general equilibrium (CGE) models have been used to
simulate the impact of exogenous shocks or policy changes on the socio-economic
system. In the late seventies, some modellers [Adelman and Robinson, 1978, Taylor
and Lysy, 1979] attempted to use CGE models for distributional analysis, but
limited the exercise to decomposing households in the CGE model into income
quintiles. Later, in the early nineties, Janvry et al. [1991] analysed the impact of
structural adjustment programs and were the first to use the Foster, Greer and
Thorbecke (FGT) metric [Foster et al., 1984] to measure poverty changes in the
Ivory Coast. Because CGE models are calibrated on the basis of a social accounting
matrix (SAM) for a reference period characterized by a set of consistent initial
conditions, the SAM does not contain any information on the income distribution of
socioeconomic household groups. Therefore, conventional CGEs can only simulate
the effect of a scenario on the representative households specified in the model.
Using this representative household approach implies a very strong assumption
that the distribution of income within groups of households is exogenous to the
model. This method can then lead to misleading conclusions, as demonstrated in
Savard [2005]. As income and expenditure surveys become more readily available,
it becomes relatively easy to integrate large sample of households or entire survey
samples into a SAM to calibrate the CGE model in order to take into account
intra-group distributional changes. In this context, two main approaches have
been used to link macro reforms to changes in income distribution and poverty.1

The integrated multi-household (IMH) approach first proposed by Decaluwé
et al. [1999], consists in including all households from the household survey in
a CGE model.2 However, it can raise some difficulties at the implementation
and resolution stage such as data reconciliation [Hertel and Reimer., 2004], each
household account needs to be balanced and aggregated to the level found in
the social accounting matrix. Another problem is related to the challenges of
finding a numerical solution, as raised by Chen and Ravallion [2004]. Finally, the
modeller is constrained to use functional forms that respect the standard conditions
of general equilibrium. The second approach is referred to as the CGE micro-
simulation sequential method (MSS) and was formalized in Chen and Ravallion
[2004]. The general idea of the MSS approach is that a CGE module feeds market

1For an interesting review and discussion on the value of the CGE macro-micro approach
to analyse poverty and inequality impact, the reader can consult Hertel and Reimer. [2004]
and Bourguignon and Spadaro [2006].

2Some authors refer to this approach as a CGE micro-simulation application.
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and factor price changes into a micro-simulation household model. The approach
offers more flexibility with respect to household behaviour modelling, as standard
constraints imposed by CGE models need not be respected. To summarize, the
RH approach is inappropriate if household data is available—as the variance of the
income distribution is held constant (no intra-group distributional impact)—but it
is easier to implement; the IMH approach is theoretically sound but is more data
intensive and can present challenges at the resolution stage; and the MSS approach
is more flexible. In this article, we use the MSS approach applied to Mali.

Researchers’ interest in income distribution began at the end of the nineteenth
century. One of the objectives was to provide a mathematical description of the size
of income distribution necessary to approximate the “true” distribution. It was ini-
tially believed that incomes are normally distributed but Pareto [1897] empirically
demonstrated that incomes are lognormally distributed and that the skewness to
the right had a flat tail, meaning unequal distribution. Since Pareto, various func-
tional forms have been proposed that can be grouped into three main categories.
The first category consists of forms describing an income distribution generated
by a stochastic process [Champernowne, 1953a,b, Rutherford, 1955, Parker, 1999].
The major criticism raised against this group is that its supporters only consider
the theoretical properties of income variables and neglect the empirical aspect. The
second category consists of the functional forms that provide a good fit to empiri-
cal data but have no theoretical basis [Salem and Mount, 1974, McDonald, 1984].
In the last group, functional forms are found as a solution to specified differential
equations such that the theoretical foundation is developed on the basis of empirical
evidence [Pareto, 1897, Singh and Maddala, 1976, Dagum, 2008]. The current liter-
ature offers many alternative forms of probability density functions to approximate
“true” income distribution. It is acknowledged, however, that even if lognormal
and Pareto distributions are easy to estimate and interpret, other distributions
such as displaced lognormal or beta, can improve the fit. The Pareto distribution
appears to be appropriate only for the upper tail of income distribution where the
fit over the whole range of incomes is limited. This limit seems to be a rule for all
two-parameter income distributions. The lognormal income distribution proposed
by Gibrat [1931] and further examined by Aitchinson and Brown [1957] seems to
correctly fit at the lower income levels but is considered to adequately fit income
distribution for a fairly homogeneous population. Salem and Mount [1974] pro-
vide empirical evidence that gamma distributions have a better fit than lognormal
distributions. Champernowne [1953a,b] suggested a three-parameter distribution,
which provides a better fit than the two-parameter one. Furthermore, according
to McDonald [1984], McDonald and Xu [1995], Bordley et al. [1996], Bandourian
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et al. [2003], Reed and Wu [2008] even if beta distributions are flexible and can
take a variety of shapes, it is a two-parameter distribution, and its accuracy for
fitting data is limited.

Over the past few years, these researchers, among others, have contributed to
generalizing the beta function. This more complex model seems to reflect more
appropriately the impact of economic fluctuations. Better fits may be obtained
with two members of the Burr family: Singh and Maddala [1976] (Burr 12),Dagum
[2008] (Burr 3). Singh–Maddala is a generalization of Pareto and Weibull distribu-
tions, and in terms of goodness-of-fit, this model outperforms both lognormal and
gamma distributions in light of the US income data application done by Salem
and Mount [1974]. Dagum [2008] proposed a theoretical description based on
regular income-elasticity characteristics observed in income distribution. Tadika-
malla [1980] and Kleiber [1996] compares the Singh–Maddala distribution with the
Dagum. He demonstrates that the Dagum almost systematically exhibit a better
fit. Bandourian et al. [2003] show that the Dagum is clearly the best fitting three
parameter models. Comparing the ability of eleven probability distribution func-
tions to fit income data for 23 countries over time, the Dagum outperforms three
parameter distributions in 84% of the time. However, Boccanfuso et al. [2008] find
that the Singh-Maddala give so good results as Dagum but conclude that there is
no single “best fitting” functional form for all groups and that the most flexible
ones appear to be more efficient in most cases.

McDonald [1984] develops two four-parameter generalizations of the beta distri-
bution, called the generalized beta of the first and second kind (GB1 and GB2). As
shown by McDonald and Xu [1995], every two and three parameter distributions
previously used to model income distributions are special cases of either the GB1
or the GB2. Empirically, Bandourian et al. [2003] find that the GB2 distribution
fits the data better than the GB1 and and any three parameter distribution in
44% of 82 cases considered.

In the literature, other four parameter distributions have been used to esti-
mate income distribution. Among these are the type II Dagum [Dagum, 2008]
and double Pareto-lognormal (dPlN) proposed by Reed and Jorgensen [2004] but
the authors of these papers have not demonstrated that these distribution that
they were a better choice. They generally find that more flexible distributions
(the ones with more parameters) exhibit better estimations. Many authors went
further to propose five parameters distribution such as McDonald and Xu [1995]
who proposed the generalized beta (GB) from which one can derive the GB1 and
GB2 under certain assumptions. Bandourian et al. [2003], Dastrup et al. [2007],
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McDonald and Ransom [2008] all illustrate that this distribution performs well
without being able to systematically arrive at the conclusion that it is the best
distribution. Reed [2007] as well as Reed and Wu [2008] proposed the General-
ized Normal-Laplace (GNL), which is a generalization of the five parameter double
Pareto-lognormal (dPlN) to estimate the income distribution of households in nine
countries. They find that the GNL is more appropriate compared to other distri-
butions including the GB of McDonald and Xu [1995]. However, Reed and Wu
[2008] conclude that without the reduced form for the density function and the
cumulative for this function, it is technically binding. They even question the
usefulness of using five parameter functions of model income distribution. More
recently, Kaniadakis [2002, 2005] developed the three parameters κ- generalized
distribution, a non-Gaussian distributions with asymptotic power-law tails, more
flexible to build statistical models [Clementi et al., 2010]. Clementi et al. [2010]
find that in a satisfactory number of cases the performance of this distribution
is not to be considered inferior from the statistical point of view to that of the
Singh-Maddala, Dagum and GB2 distributions. Given that a great deal of litera-
ture has been produced on modeling income distribution over the past 60 years, we
believe that it has not been fully exploited in the context of CGE micro-simulation
analysis.

Janvry et al. [1991] applied Pareto distributions to model the income distribu-
tion of different subgroups in Ecuador, the best suited to represent the income
distribution for higher income groups. Chia et al. [1994] and Montaud [2003] used
lognormal distribution for groups in the Ivory Coast and Burkina Faso respectively.
Dervis et al. [1991] also chose this two parameters distribution assuming the change
in mean is equal to the change in income of the representative household gener-
ated by the CGE model and use it to calculate a new theoretical variance for this
function. The lognormal distribution should be more appropriate for a high con-
centration of low income groups. Adelman and Robinson [1978] also performed a
statistical test on lognormal that proved unsatisfactory in a few cases when testing
for skewness and kurtosis. To solve this problem, they eliminated a socio-economic
group by aggregation. Decaluwé et al. [2009], Stifel and Thorbecke [2003], Agénor
et al. [2005], Bazlul et al. [2006] and Oum [2009] among others, applied the beta
distribution arguing that the income distribution modeling approach and statis-
tical literature provide evidence that income distribution may be represented by
more appropriate and flexible functional forms [Bordley et al., 1996]. Boccanfuso
et al. [2008] verify whether the results were affected by the choice of various in-
come distribution functions used in the CGE context such as lognormal, gamma
or beta. They have illustrated that using more flexible functional forms to model
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income distribution is more appropriate compared to what is presently used in
the CGE modeling literature. But there is no single “best fitting” functional form
for all groups. Furthermore, the greater the degree of household disaggregation,
the more attention should be paid to the choice of income distribution functional
form and estimation/computation method if one is to provide accurate poverty
analysis. An other approach used to model income distribution in this context was
first proposed by Cockburn [2002] and others after him. In his CGE-IMH model
applied to Nepal, he used an empirical method to compare the income distribu-
tion of different household groups. However, Boccanfuso et al. [2008] showed that
when sample sizes are relatively small, this empirical approach is found not to be
as sensitive as the continuous functional forms.

However, beyond the choice of the distribution through the scope of its flexi-
bility characterized by its number of parameters to estimate, some authors reveal
another problem for parametric estimation of distributions. Dastrup et al. [2007]
find that the best fitting parametric distribution depends on the definition of in-
come (earnings, total income, disposable income, expenditures,...) and may change
following a policy (ex: taxe increases). This means that whenever attempting to
fit a parametric distribution to a sample of observed income variables, one is forced
to estimate several different specifications, which may be computationally cumber-
some, as it proves to be with our Malian data set. Clementi et al. [2010] expressed
the same observation in their conclusion.

Furthermore, even when maximum likelihood estimation proceeds well, one
must face some difficulties at the model selection step. For instance, the GB1
and GB2 distributions are not nested, which renders testing somewhat more com-
plicated than simply using a likelihood ratio statistic. Indeed, even when the
distributions are nested the null hypothesis may impose a set of constraints which
lie on the border of the parametric space. For instance, a test of the GB2 against
the GB imposes that c = 1 under H0 while 0 ≤ c ≤ 1 under H1. It is well known
that common statistics such as the likelihood ratio do not follow their usual χ2

distribution under this type of null hypothesis (see e.g. Gourieroux et al. [1982])
and that the bootstrap fails to deliver valid inferences [Andrews, 2000]. Other,
more complicated, inference methods such as subsampling are available, but their
finite sample properties often are somewhat poor.

Considering the importance of modeling the impact of price variations on in-
come distribution to analyze the impact of poverty changes in the context of CGE
microsimulation modeling, the difficulties associated with the choice of the “good
distribution” that can change according to the characteristics of the target groups
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based on the effects of simulations as is shown in Boccanfuso et al. [2008] or again
given a welfare indicator as in Dastrup et al. [2007], Clementi et al. [2010], and
the limits of the inference method raised earlier, we propose to compare poverty
analysis given different parametric distributions (Singh-Maddala, GB2 and GB)
with results from empirical FGT and finally with non parametric methods in the
CGE microsimulation context. Indeed to circumvent the problem of selecting and
distribution, we investigate the usefulness of non parametric estimation our paper.
Interestingly, this approach is commonly used in the literature, under certain condi-
tions, it has not been experimented to our knowledge in the CGE microsimulation
context.

The rest of this paper is structured such that we first describe the estimation
methods (section 2). In the third section, after a brief presentation of the CGE
model and the Malian data used, we describe the estimation results (parametric
and non parametric) as well as poverty impact (FGT0). In the next section (4),
we perform Monte Carlo simulation to identify the best estimates for poverty
variations and finally we provide concluding remarks and highlight the contribution
of the paper.

2 Maximum likelihood and nonparametric CDF estimation

Maximum likelihood estimation of parametric distribution using modern software
is very easy but should not be regarded as an automated process. Because the
likelihood function is generally too complicated to allow for its maximum to be
found analytically, maximum likelihood relies on numerical search algorithms. The
basic principle of these algorithms is always the same: as a first step, they must
be provided with a starting value. From this starting value, they search in which
direction the likelihood function seems to be higher, then decide how far to go
in this direction and repeat the process from the point where they landed unless
this point is judged to be a probable maximum. Some algorithms work better
than others in different situations, so this choice may be of importance. Usually,
algorithms of the Newton type work quite well in econometrics and are therefore
used by virtually every major econometric software, see Davidson and MacKinnon
[2004] (chap. 6), for an accessible discussion.

Even with an efficient search algorithm, maximum likelihood estimation re-
quires the investigator to make several often crucial decisions, the most important
of which being the choice of the values at which the search algorithm is to start.
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If the algorithm is initiated too far from the global maximum, it might converge
to a local one or not converge at all. A simple way to minimize the incidence of
this problem is to run the search from different starting values. Another aspect
which warrants vigilance is the fact that the algorithm may stop for any of several
reasons: a gradient sufficiently close to 0, very similar successive parameter values,
maximum number of iterations reached or numerical over or underflow. It is un-
likely that a maximum has been reached if termination occurs because of any but
the first reason. It is therefore important that the investigator check the reason
for the termination before considering the terminal point as a maximum. Even if
termination occurs as a results of a very small gradient, it is always possible that
the algorithm has converged to a local maximum, so that the estimated vector of
parameter does not globally maximizes the likelihood function. Some methods,
such as simulated annealing, ensure convergence to a global maximum. They are
however much more difficult to apply than Newton-type algorithms and are not
typically included in standard econometric packages.

Nonparametric kernel estimation requires less intervention by the investigator.
The kernel CDF estimator of a distribution F at a point x is

F̂h(x) =
1

n

n∑
t=1

K

(
x− xt
h

)
, (1)

where K is a cumulative kernel, which consists of a cumulative density function
usually symmetric around 0, and where h is the bandwidth. In essence, the only
two necessary choices are those of a cumulative kernel function, which determines
the shape of decrease of the weights given to observations away from the point of
interest, and a bandwidth, which determines the rate of this decrease. The former
is typically of little importance while the latter usually has a great influence on the
accuracy of the resulting estimation. In any given case, the optimal bandwidth,
that is the bandwidth which yields the most accurate estimates, depends on the
characteristics of the data generating process, which is always unknown.

It is easy to see that if h→∞, then
(
x−xt
h

)
→ 0 which implies, by the symmetry

of K(), that F̂h(x) = 0.5 for all x. Then, Var
(
F̂h(x)

)
= 0 but its bias is quite

large. If, on the other hand, h → 0, than
(
x−xt
h

)
→ +∞ or −∞ depending on

the sign of x − xt. It therefore follows that K
(
x−xt
h

)
→ I(x ≥ xt), where I(z) is

the indicator function which equals 1 if the argument z is true and 0 otherwise.
Thus, F̂h(x) converges to the EDF, which means that it has a small bias and a very
large variance. The former case is referred to as oversmoothing while the latter is
called undersmoothing. Techniques to select h are all based on minimizing some
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functional of F̂h(x)’s mean squared error, which is a combinaison of its bias and
variance.

Several methods for the choice of h have been proposed. Rule-of-thumb selection
methods are the easiest ones to use and take the general form h = a0n

b, where n
is the sample size and a and b are parameters. It can be shown that, if one wishes
to estimate a PDF, then the optimal value of b is −1/5 while if one estimates
a CDF, then b should be −1/3. The optimal value of a depends on the true
distribution of the data. In particular, a should be chosen to be function of the
spread of the distribution. When this is close to Gaussian, the standard deviation
is a good measure of the spread. If the distribution has thick tails however, the
standard deviation tends to overestimate the spread and one might prefer to use
the interquantile range (IQR), that is the difference between the 0.75th and 0.25th

quantiles of the data. See Azzalini [1981], Wand and Jones [1995] or Q.Li and
Racine [2006] for proofs of these results and Davidson and MacKinnon [2004] (chap
15) for an accessible discussion.

Another selection method for h which uses more of the information contained
in the sample is least squares cross validation. This is based on the principle of
selecting the value of h which minimizes the integrated squared error of F̂h(x) given
the sample. Bowman et al. [1998] propose using h that minimizes

CVF (h) =
1

n

n∑
t=1

∫ [
1(xt ≤ x)− F̂−t(x)

]2

dx, (2)

where

F̂−t(x) =
1

n− 1

n∑
j 6=t

K

(
x− xj
h

)
.

Notice that F̂−t(x) simply is the kernel CDF estimate with bandwidth h computed
by excluding observation t. This exclusion is necessary because otherwise the
function (2) would converge monotonically to 0 as h → 0, see Q.Li and Racine
[2006] (chap 1), for a discussion of this point. Bowman et al. [1998] show that the
value of h that minimizes (2) converges in probability to the asymptotically optimal
choice. The main drawback of cross-validation methods is the computational time
necessary to minimize (2), which usually is considerable.
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3 Estimation with actual data and CGE

In this section, we consider the accuracy of maximum likelihood estimation un-
der different distributional assumptions as well as that of nonparametric kernel
estimation using different bandwidth selection methods with actual income data
and income data resulting from four CGE simulations. To illustrate we used the
model developped by Boccanfuso and Savard [2011]. The social accounting matrix
(SAM) is decomposed into 10 production sectors, seven of which are tradable and
three of which are non-tradable based on 2001 data. The CGE module includes
four agents, namely an aggregate household, the government, firms, and the rest
of the world. We have also included savings and investment accounts. All 4,966
households of the Malian household survey “Enquête malienne d’évaluation de la
pauvreté” (EMEP - 2001) have been integrated into a household micro-simulation
model.

Using a Cobb-Douglas production function (for value-added), we assume pro-
ducers have a cost-minimizing behaviour constrained by this production function.
Value-added is a combination of capital and labour and is related to intermediate
consumption with a fixed-share assumption. Capital is assumed to be fixed, which
generates a branch-specific return on capital. The returns on capital combined
with the wage provide for ten factor payments. These factors payments are the
main source of the heterogeneous impact on household income changes. The gov-
ernment collects its revenues through income taxes (imposed on households and
firms), goods and services taxes, import duties, and transfers from other agents
(the rest of the world). It spends this revenue by paying subsidies and by pro-
ducing public services. Household income is composed of wage payment, capital
payments, dividends, and transfers from other agents (households and remittances
from abroad). Household expenditure is derived from maximizing a Cobb-Douglas
utility function under budgetary constraint. The income tax rate corresponds to
the effective tax rate and not the administrative rate. The welfare indicator used
at the household level is the real income. The nominal income is deflated by a
household-specific consumer price index. This approach is different than the en-
dogenous poverty line approach proposed by Decaluwé et al. [2005], as it captures
a household-specific price effect of the simulation based on each household con-
sumption structure. As for closure rules, we also assume that government saving
is exogenous and that total investment is endogenous, since its level is determined
by the level of savings (domestic and foreign). The total labour supply is assumed
fixed and workers can move from one sector to another following a simulation.
Hence, there is no endogenous unemployment in the model. The current account
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balance (CAB) is exogenous, as is the nominal exchange rate, which also serves as
the numeraire. The price index (GDP deflator) is endogenous and allows for clear-
ing the CAB. We assume in a standard fashion that Mali is a small open economy
with the Armington [1969] assumption for the demand of imported goods: im-
perfect substitution with constant elasticity of substitution function (CES) and
constant elasticity of transformation function (CET) to model the export supply.

The distributional analysis is performed from an output originating from the
micro-simulation household module but including 4,966 households. We transmit
price changes and factor payment changes from the CGE module to the micro
module in a top-down fashion. With these new prices, the module computes the
new incomes and household-specific price indices. The price indices are a function
of each household expenditure structure. The output of the micro module is a
vector of new real income. We identified six household groups according to their
geographical location (Bamako, other urban areas and rural areas) and the gender
of the head of household. Most of the population lives in rural areas, with 70.92%
for Mali. The Table 1 presents the size and the proportion of each group.

Table 1: Statistics of the household groups

# Obs % Sample
% Malian
households

Mali 4966 100% 100%

Urban (with Ba-
mako) Men

Bamako Men 454 9.14% 10.16%

Other urban Men 1151 23.18% 14.56%
Urban (with Ba-
mako) women

Bamako Women 52 1.05% 1.00%

Other urban Women 183 3.69% 3.36%

Rural Men 2950 59.40% 65.77%

Rural Women 176 3.54% 5.15%

Source: EMEP, 2001

Let us recall the main objective of this paper that is on one hand to see if we
can identify the best parametric distribution among the ones used in the literature
given different sample size of target groups and on the other hand we aim to
compare the robustness of results obtained with the non parametric approach in
the context of CGE microsimulation. To achieve these objectives, we used two
simulations presented in Boccanfuso and Savard [2011]. These two simulations
which reproduce the impact of the food crisis, linked to the increase in international
food prices. In the first simulation a 70% generalized increase food prices (all
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types of agricultural goods) is performed. For the second simulation, it focuses on
the increase in cereal prices excluding cotton (since Mali is an important cotton
exporter).

3.1 Parametric estimation

As table 1 shows, our analysis is based on a sample of 4,966 observations and
a number of subsamples representing different strata of the population. Sample
sizes range from 52 for Bamako households headed by a women to 4,966 for the
country as a whole. We will first take a look at the parametric estimation results.
The main issue there is to choose which distribution fits the data best in order to
obtain an accurate poverty rate estimate. Table 2 shows the distribution chosen by
likelihood ratio tests based on standard χ2 5% critical values for each subsample.
Because of the problems mentioned above associated with these tests, it is likely
that the critical values are not always valid so that these inferences may not be as
accurate as they should.

Furthermore, because they are not nested, it is not always possible to make a
clear choice between the Singh-Maddala and Dagum distributions, hence in some
cases where their loglikelihood are almost identical, we report that both distribu-
tions appear to fit the data equally well. In some other cases involving tests of
the GB2 against the GB, the LR statistic is very close to the χ2(1) critical value.
When this happens, table 2 reports the P value of this test.

Table 2: Parametric distribution selected by LR tests

Reference Simulation 1 Simulation 2
Mali GB GB GB
Urban GB2 (P = 0.0540) GB (P = 0.0058) GB (P = 0.0060)
Rural GB (P = 0.0488) GB2 (P = 0.1252) GB (P = 0.0460)
Rural men GB2 (P = 0.0580) GB2 (P = 0.1797) GB2 (P = 0.0540)
Rural women DM or SM DM or SM DM or SM
Urban men DM or SM DM or SM DM or SM
Urban women GB GB GB
Bamako men DM DM GB
Bamako women DM or SM DM or SM DM or SM
Non-Bamako men SM SM SM
Non-Bamako women DM or SM DM or SM DM or SM

Note: P values in parenthesis

Starting with the actual data, we find that LR tests select each of our 4 distri-
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butions at least once, but that there often is considerable ambiguity. While the
GB seems to be appropriate for the population as a whole (the LR statistics of
the GB2 against the GB is 58.73), it appears to be over-parametrized for at least
six population sub-groups. Depending on how strict one wants to be about the
5% level of the test, the GB may or may not be the best choice to model the
distribution among urban and rural households and among rural households with
a men at their head.

This sort of ambiguity also happens between the Dagum and Singh-Maddala
distributions and can sometimes have an important impact on the analysis be-
ing based on these estimations. As an illustration, let us consider the population
subgroup consisting of Bamako households with a female head, of which our sam-
ple contains 52 observations. Table 2 indicates that both the Singh-Maddala and
Dagum distributions provide appropriate representations of income distributions.
Their estimated head count poverty ratio are 13.9 and 13.5 respectively. Mean-
while, the headcount ratio estimated by the GB distribution is 15.8. Thus, as-
suming that the Singh-Maddala and Dagum distributions are indeed appropriate,
the use of an over-parametrized distribution such as the GB may lead to substan-
tial distortions in the poverty ratio estimates. Therefore, a modeler performing an
analysis involving several population subgroups must be very careful not to impose
a single functional form to every groups.

One must also be careful not to systematically use the same distribution for a
given subgroup while performing an impact analysis for a policy because the policy
may change the distribution. Our data provide one clear example of this with the
case of Bamako households headed by a man before and after simulation 2, where
the Dagum is selected over the GB and GB2 distributions with the original data,
but soundly rejected in favour of the GB even at 1% with the simulated data. Table
3 shows the LR statistics for this population subgroup. Other selection criteria
such as choosing the distribution with the smallest sum of squared errors run into
the same kind of troubles.

3.2 Nonparametric estimation

One of the purposes of this paper is to see whether nonparametric kernel distri-
bution estimators can provide accurate estimates of income distribution functions
that can conveniently be used for policy impact analysis. This method has the
advantages of not requiring that the modeler specify a parametric function for the
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Table 3: LR tests statistics for Bamako households headed by a men

Original data Simulation 1 Simulation 2
LR (GB2 vs GB) 1.2817 3.9684** 11.4112***
LR (SM vs GB) 7.5824*** 9.7431*** 17.9644***
LR (SM vs GB2) 6.3007*** 5.7747** 6.5532***
LR (DM vs GB) 1.4600 3.8284* 11.5837***
LR (DM vs GB2) 0.1799 0.1401 0.17256

5% critical values for χ2(1) and χ2(2) distributions are 3.84 and 5.99 respectively.
***, ** and * denote rejection of the nested distribution at 1%, 5% and 10% levels respectively.

data’s distribution and of not requiring any numerical optimization algorithm, ex-
cept, perhaps, a cross-validation search for the optimal bandwidth, which usually
is much simpler than maximum likelihood parametric distribution estimation.

The kernel nonparametric estimators we used were all based on a standard nor-
mal gaussian kernel. This was done for simplicity’s sake and may actually not
be optimal. For one thing, Serfling [1980] showed that, in a wide range of situa-
tions, the Epanechnikov kernel, which is quite different from the gaussian kernel,
minimises the kernel density estimator’s integrated mean squared error. Also, the
fact that income data is nonnegative is not properly being taken into account by
usual kernels such as the gaussian or the Epanechnikov. Indeed, these kernels give
positive weights to negative income values, which are outside the support of the
data. This creates a bias, aptly called boundary bias, which can be eliminated by
using asymmetric kernels that assign 0 weights to every values outside the data’s
support. Bouezmarni and Scaillet [2005] provide some theoretical properties of
nonparametric density estiation based on asymmetric kernels and use a Brazil-
ian data set to show that they may indeed improve upon usual nonparametric
estimators. Because using these kernel estimators is somewhat more complicated
than using gaussian ones, we do not consider them here. Finally, it is well known
that smoothed nonparametric kernel distribution estimators are biased, a flaw they
compensate by a reduced variance compared to the unsmoothed empirical density
estimator. It is possible to decrease this bias by using higher order kernels. Briefly,
standard kernels such as the gaussian and Epanechnikov are called second order
kernels because their second moment is their smallest nonzero one. A m order
kernel is one for which the smallest nonzero moment is its mth. It can be shown
that using a m order kernel with m > 2 decreases the bias. This however comes
at the cost of a greater computational burden and with the undesirable feature
that the density estimate is no longer guaranteed to be positive at every point of
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its support. To keep the analysis as simple as possible, we do not consider higher
order kernels. Interested readers may consult Q.Li and Racine [2006] for further
details.

No matter what type of kernel is used, for any given data set or any underlying
distribution, the choice of bandwidth is of much greater importance than that of
the kernel function. As discussed by Azzalini [1981] and Wand and Jones [1995],
h1 = 1.587σ̂n−1/3 and h2 = 1.3σ̂n−1/3 are optimal choices when the data has been
generated by a distribution resembling the normal and when one is interested in
the whole CDF or its tails respectively. Because income data distribution are
usually quite different from the normal, it maybe expect that the cross-validation
procedure Bowman et al. [1998] would provide more accurate estimates.

The accuracy of the different estimation procedures is measured using criteria
similar to those used by Boccanfuso et al. [2008]. These are the sum of squared
errors (SSE), the sum of absolute errors (SAE) and, in the maximum likelihood
cases, the maximized log-likelihood value.

SSE =
n∑
t=1

(
ni/n− pi(θ̂)

)2

,

SAE =
n∑
t=1

| ni/n− pi(θ̂) |,

where n is the sample size and

pi(θ̂) =

∫ xi

−∞
f̂(x)dx,

ni =

xi∑
t=1

I(xt < xi),

where f̂(x) is an estimate of the PDF f(x). In simpler terms, pi is the estimated
weight of f(x) to the left of the point xi while ni/n is the fraction of the data in
the actual sample to the left of that point, that is, the EDF evaluated at xi.

Table 4 reports some results from estimating a number of distributions from
our Malian data set. We chose to focus on the different estimates’ SSE and SAE
as a basis of comparison, but we also report FGT0 indices since they are of special
interest to us (Table 5). It must be noted here that one can trivially obtain a
nonparametric estimator with zero SSE and SAE by setting h = 0, which yields
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Table 4: SSE of estimated distributions with original Malian data

GB GB2 SM Dagum K hmse K himse K hcv
Mali 0.041 0.169 0.133 0.535 0.025 0.051 0.001
Urban 0.019 0.039 0.070 0.118 0.028 0.057 0.064
Rural 0.088 0.106 0.243 1.064 0.068 0.129 0.0049
Rural men 0.019 0.043 0.071 0.131 0.026 0.051 0.006
Rural women 0.657 0.604 0.612 0.552 2.582 4.297 0.758
Urban men 0.996 0.911 1.090 0.847 1.370 2.548 0.091
Urban women 0.067 0.109 0.234 0.978 0.073 0.140 0.065
Bamako men 1.153 1.097 1.146 0.843 0.704 1.286 0.132
Bamako women 6.668 4.302 4.307 4.289 8.358 14.73 0.651
Non-Bamako men 0.045 0.051 0.072 0.450 0.069 0.134 0.099
Non-Bamako women 1.561 1.505 1.571 1.499 1.578 2.859 0.153

the EDF. Because minimizing the either the SSE or the SAE is not the purpose
of any of our parametric or nonparametric estimator, we consider this measure
appealing.

Table 5: FGT0 indices with original Malian data

GB GB2 SM Dagum K hmse K himse K hcv EDF
Mali 0.5199 0.51257 0.51040 0.50233 0.51343 0.51202 0.51628 0.51651
Urban 0.2601 0.25969 0.25925 0.26374 0.26152 0.26246 0.26145 0.26467
Rural 0.6398 0.64252 0.63505 0.63285 0.63749 0.63538 0.64094 0.64427
Rural men 0.6531 0.65643 0.64993 0.64740 0.65073 0.64879 0.65348 0.65728
Rural women 0.4067 0.40587 0.40410 0.40770 0.39739 0.39447 0.40741 0.42613
Urban men 0.2532 0.25256 0.25064 0.25312 0.25912 0.26716 0.26461 0.24255
Urban women 0.2617 0.26078 0.26023 0.26435 0.26441 0.26517 0.23976 0.26791
Bamako men 0.1680 0.16789 0.17778 0.16905 0.18681 0.19309 0.17854 0.18061
Bamako women 0.1577 0.13500 0.13903 0.13501 0.20722 0.22648 0.16413 0.17307
Non-Bamako men 0.2980 0.29857 0.29597 0.30380 0.29958 0.30009 0.29982 0.30060
Non-Bamako women 0.2856 0.28418 0.28253 0.28654 0.28255 0.29102 0.26041 0.26229

4 Monte Carlo Simulation

The interest of the present paper centers on the estimation of poverty incidence
within a population based on an observed sample. Let z be the poverty line and F
be the actual cumulative distribution of households incomes in the economy. The
true population poverty rate is then

PR0 = F (z). (3)
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Let F̂ (x) denote a consistent estimator of F (x). Then, a consistent estimator of
PR0 is

P̂R = F̂ (z).

The simplest consistent estimator of F (x) is the EDF, which yields an estimator of
PR0 that simply is the fraction of households with income below z over the total
number of households:

P̂REDF = F̂EDF (z) =
1

n

n∑
t=1

I(yt < z)

where I() is the indicator function. This estimator is the most widely utilized in
practice and is often the default in popular statistical softwares such as DASP. One
weakness of the EDF is that it has a rather large variance, and this characteristic
carries over to P̂REDF . To illustrate this, consider a sample of 100 observations
with 20 observations below the poverty line, so that P̂REDF = 0.2000. Suppose
then that an additional observation is added to the sample and consider the impact
of this observation on P̂REDF . If the new observation is above z, then P̂REDF

becomes 20/101 = 0.1980, a variation of 1%. If on the other hand the new obser-

vation is below z, then P̂REDF becomes 21/101 = 0.2079, a variation of nearly 4%.
Such large changes on account of a single observation are evidently not a desirable
feature.

Smooth estimators such as those provided by maximum likelihood and nonpara-
metric kernels reduce this problem by trading some variance for more bias. The
question is then how much bias is acceptable for a given reduction of variance? The
usual answer to this question it that the best estimator is the one which minimizes
the mean squared error, defined here as

MSE(P̂R) = E
(
P̂R− PR0

)2

. (4)

Of course, the expectation in (4) cannot be computed analytically because we do

not generally know the distribution of P̂R. It can nevertheless be approximated
with arbitrary accuracy through Monte Carlo experiments. Suppose we draw M

samples from F and let P̂Ri denote the poverty rate estimated from F̂ in the ith

sample. Then, we can approximate MSE(P̂R) by

ˆMSE(P̂R) =
1

M

M∑
i=1

(
P̂Ri − PR0

)2

. (5)
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For a large enoughM , a law of large numbers implies that ˆMSE(P̂R)
p→MSE(P̂R).

It must be stressed that expression (5) cannot be computed for any given sample
because PR0 depends on the true characteristics of the data’s generating process,
which is not known. This expression can only be used to numerically derive some
theoretical, finite sample, properties of different estimators of the poverty rate.
This is what we do in this section.

To carry out the Monte Carlo simulations necessary to approximate (5), one
must first choose a distribution from which to draw artificial samples. In all that
follows, samples are drawn from a Singh-Maddala distribution, which is a special
case of the GB distribution with c = p = 1. The main reason for this choice is
our desire to control the thickness of the right tail of the distribution from which
we generate data, which may be a crucial parameter. With the SM distribution,
the tail thickness is given by the product of q and a. A second reason is that it
is somewhat easier to draw random numbers from the SM than from the GB2 or
GB distributions (the SM is easily solved for y). Finally, as we saw in Table 2 and
as was found by several authors [Brachmann et al., 1996] the SM distribution fits
actual data quite well.

In order to draw artificial samples, values for the parameters a, b and q must be
chosen. The parameter b determines the scale of the distribution, and is of little
importance, so we have set it to 3, which is close to the values we found for our
different Malian population subgroups. The product of a and q determines the
thickness of the distribution’s right tail. The lower this product is, the thicker the
tail is and for aq ≤ 2 and aq ≤ 1, the variance and and mean, respectively, are
infinite. Estimation with our Malian data set yielded tail indexes ranging from
slightly over 2 to about 3.5, depending on the population sub-group considered.
Our first set of experiments uses samples drawn with a tail index of 2, which thus
represents a case slightly more challenging than, yet not too far remote from, what
we found with the Malian data. Other samples were drawned with tail indexes of
3 and 1 and will be discussed later.

Our first concern is to find out whether, in our chosen setting, any given es-
timation method yields the most accurate poverty rate estimates for all possible
poverty rate values. Our measure of accuraty is the mean squared error of the
estimates, which we compute as

MSE(P̂R) =
1

M

M∑
j=1

( ˆPRj − PR0)2,
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where M is the number of Monte Carlo samples used and PR0 is the true poverty
rate. Figures 1 to 3 show the estimated MSE of the poverty rate estimated by
the EDF, the GB2 distribution and the nonparametric kernel using the gaussian
reference rules of thumbs and cross validation for samples of 25, 100 and 1000
observations. Obviously, every estimator gains some accuracy as the sample size
increases, which is a consequence of the fact that they are all consistent.

It is quite clear from these figures that the EDF estimator, which is the default
one in softwares such as DASP, is not optimal. Indeed, the GB2 estimator has
lower MSE for all poverty rates considered. Thus, provided one has access to
a convenient maximum likelihood estimation package, one appears to always be
better off using the GB2 than the EDF.

It is also clear that using nonparametric kernel estimators with gaussian-optimal
rules of thumbs is not at all a good idea because their MSE depends greatly on
the actual poverty rate and is often much larger than the others. This evidently
is due to the fact that the Singh-Maddala distribution is very different from the
normal.

Not surprisingly, because it does not require the underlying distribution to be
normal, kernel estimation with crossvalidation yields much better results. For
small samples, it is almost always more accurate than the EDF and often also
outperforms the parametric estimator. It is, however, more sensitive to the actual
poverty rate than the parametric estimator. This may be due to the fact that
the crossvalidation algorithm is designed to minimize the integrated MSE over the
whole distribution, and not at the poverty line. There may therefore be room
for improvement by modifying the crossvalidation algorithm so that it gives more
weight to points in a close neighborhood of the poverty line. This will be explored
in a later version of this paper.

Figures 4 and 5 explore the impact of the thickness of the tail of the distribution
on the MSE of nonparametric (with crossvalidation) and parametric poverty rate
estimates. It seems that both estimators are fairly robust to all but very thick
tails. In this latter case, the parametric estimator seems to be preferable for low
poverty rates while the nonparametric one seems to be preferable for other rates.
Given that distributions with no moments at all (that is, with a tail index of 1)
do not appear to be common for income data, we may conclude that both type
of estimators appear to be quite robust to the type of tails usualy encountered in
practice.
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5 Conclusion

This paper extends from the findings of Boccanfuso et al. [2008] and aims to verify
is more flexible income distribution function are systematically preferred over less
flexible ones to perform poverty analysis in the context of CGE microsimulation
framework. This issue is important since this framework of analysis commonly
uses variable size of household groups for the distributional impact analysis. In
the context of an empirical analysis, we find that among the four parametric dis-
tributions of 4 to 5 parameters, each is the preferred option at least once and that
the preferred function can change for the same group after a simulation. Moreover,
our results reveal that the poverty analysis can be affected by the choice of the
distribution.

Hence, our results would lead us to think that non parametric approach and
more specifically with the estimation based on the cross validation provides an
interesting alternative to the empiric and parametric approaches. This finding is
even stronger when working with target groups of a small size. However, caveats
should apply and our results should be considered to be a basis for further investi-
gation. Among possible extension to this work we could highlight the asymmetric
kernel that attributes no weight to negative income as oppose to the Gaussian ker-
nel. Moreover, the estimation bias of our results could be reduced with the use of
a kernel functions of order superior to two. Finally, an extension could generalize
the approach with applications to other poverty and inequality indices. From an
economic policy perspective, our results illustrates the importance of considering
the sensitivity of poverty analysis to the choice of methodology used by the mod-
eler when using the empiric and less flexible function forms to represent the income
distribution.
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6 Annexes

Table 6: DASP Results

Bamako
Other Ur-
banAreas

Urban Rural Mali

Poverty line 149 037 146 068 146 398 119 623 157 920
Men head household

Initial FGT0 18,06% 30,06% 26,79% 65,73% 59,97%
Sim 1 ∆ % FGT0 -13,41% -14,74% -15,81% -14,29% -9,97%
Sim 2 ∆ % FGT0 0,00% 2,02% 0,93% 0,62% 0,60%
Sim 3 ∆ % FGT0 -24,39% -25,72% -26,51% -19,55% -13,97%

Women head household
Initial FGT0 17,31% 26,23% 24,26% 42,61%
Sim 1 ∆ % FGT0 -11,11% -2,08% -3,51% -10,67%
Sim 2 ∆ % FGT0 0,00% 0,00% 0,00% 0,00%
Sim 3 ∆ % FGT0 -11,11% -12,50% -12,28% -16,00%

Source: EMEP 2001
Italic : significant at 5%

Figure 1. Mean Squared Error (n=25)
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Figure 2. Mean Squared Error (n=100)
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Figure 3. Mean Squared Error (n=1000)
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Figure 4. MSE nonparametric (n=100)
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Figure 5. MSE parametric (n=100)
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