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Abstract 

The paper estimates the shadow prices of SO2 emissions for 36 Czech industry sectors during the 

period 2000-2008. A convex nonparametric least squares quadratic optimization formulated by 

Mekaroonreung & Johnson (2012) is applied to measure technical efficiency and to jointly estimate the 

shadow prices of SO2 emissions. The weighted average shadow price ranges between 360€ and 1,316€ 

per ton of SO2 and it declines over time. These values are in line with other estimates of SO2 shadow 

price and marginal abatement cost estimated for the Czech Republic. Since the estimated shadow 

prices of emissions can be interpreted as marginal abatement cost, the ExternE method is applied to 

compare them with the marginal environmental external costs that are attributable to SO2 emissions 

released by the industry sector. We conclude that current regulation is far from the economic optimum, 

since the estimated SO2 shadow prices are much lower than corresponding marginal damage costs: in 

some sectors the shadow prices are even one order of magnitude smaller than the external costs. Since 

current market-based instruments have internalised the external costs only partly, these instruments 

have been ineffective and economically sub-optimal.  
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1 INTRODUCTION 
 

The Czech Republic, with a 28% of GDP represented by industry, belongs among the most 

industrialized countries in the European Union (Eurostat, 20115). Although the air quality in the Czech 

Republic has significantly improved as a result of stricter air quality control during the transition 

period in 1990’s and the implementation of environmental acquis communitaire of the European 

Union in the following decade (Ščasný & Máca, 2009), sustainable energy (Olabi, 2014) is far away 

and further airborne emission reduction (Ščasný et al. 2009) and energy savings are desirable. In 

reality, however, since the end of 1990’s the rate of emission reduction has slowed down significantly 

(EEA, 2014). The aim of our paper is therefore to identify sectors with the highest economic potential 

for reduction of sulphurous emissions
1
 in the Czech Republic, measured through the shadow price of 

SO2 across the industry sectors. We also aim to compare the implicit price of SO2 emissions with the 

magnitude of damage caused by these emissions and with the current level of market-based 

instruments which should internalise these external costs.  

We contribute to the literature by estimating shadow prices of SO2 emissions emitted by 36 industrial 

sectors in a post-transition European country, the Czech Republic, during the years 2000 to 2008, 

supplementing our previous study based on ODF method and aimed at the Czech power sector (Rečka 

& Ščasný, 2011). In this paper, we specifically follow the Mekaroonreung & Johnson (2012) study and 

apply Convex Nonparametric Least Squares quadratic optimization to analyse technical efficiency 

jointly with emission shadow price estimation. Then we apply the impact pathway analysis embedded 

in the ExternE method (Preiss, Friedrich, & Klotz, 2008) to quantify the environmental external costs 

attributable to SO2 emissions. Lastly, the shadow prices (i.e. the marginal abatement costs) are 

compared with corresponding external costs to draw policy-relevant conclusions. 

Our findings indicate a significant potential for SO2 emission reduction in the sectors with high SO2 

emission production. The weighted average of estimated shadow prices is at the value of 834€ per ton 

of SO2 and has a decreasing trend from more than 1100€ 2000 to less than 500€ in 2008. The rest of 

the paper is organized as follows: section 2 describes our method, i.e. the CNLS quadratic optimization 

problem applied for the inefficiency estimation, and how our approach derives the shadow prices and 

the external cost. Section 3 describes the data used, and Section 4 presents the results. The final section 

draws concluding remarks. 

2 LITERATURE REVIEW 
 

Färe et al. (1990) provided the first estimates of shadow prices of production factors based on a 

frontier approach. Färe and Grosskopf (1993) were then the first who applied Shephard’s (1970) 

concept of weak disposability between desirable and undesirable outputs on distance function with the 

translog functional form in order to estimate the shadow price of four air pollutants released from pulp 

and paper mills in Michigan and Wisconsin, USA. Since translog or similar functional forms of the 

distance function are differentiable, this parametric approach was applied in many other studies, 

mostly in the USA and Asia (e.g. Bauman, Lee, & Seeley, 2008; Coggins & Swinton, 1996; Gupta, 

2006; Hailu & Veeman, 2000; Kwon & Yun, 1999; John R. Swinton, 1998) thanks to the fact that 

functions are differentiable everywhere. On the other hand, if the functional form is misspecified, the 

parametric approach can yield biased estimates.  

                                                             
1 Sulphurous emissions are measured as SOX (mixture of SO2/SO3) and are expressed in SO2 equivalents. 



3 
 

Alternatively, Boyd et al. (1996) used a nonparametric specification of directional distance function to 

estimate the marginal abatement cost (MAC) of SO2 on a sample of  62 US power plants. Lee et al. 

(2002) extended the  nonparametric direction distance function approach to control also for the 

inefficiency in production process. For these purposes, Lee et al. (2002) define an efficiency rule as 

𝜎𝑔 = 𝜎𝑔(𝜆), 𝜎𝑏 = 𝜎𝑏(𝜆) , where 𝜎𝑔 and 𝜎𝑏 are called inefficiency factors and 𝜆 is a parameter relating 

𝜎𝑔 to 𝜎𝑏. The efficiency rule maps a point (𝑦, 𝑏) ∈ 𝑃(𝑥) to corresponding (𝑦∗, 𝑏∗) on the boundary 

𝑃(𝑥) in a way that 𝜎𝑔(𝜆)𝑦 = 𝑦∗, 𝜎𝑏(𝜆)𝑏 = 𝑏∗, where y, b and x denotes the vectors of desirable 

outputs, undesirable outputs, and inputs, respectively. Furthermore they defined an efficiency path and 

iso-efficiency path as follows: 𝐸𝑃(𝑦∗, 𝑏∗) = [(𝑦, 𝑏) ∈ 𝑃(𝑥): 𝜎𝑔(𝜆)𝑦 = 𝑦∗, 𝜎𝑏(𝜆)𝑏 = 𝑏∗ 

and 𝐼𝐸𝑃(𝑦0, 𝑏0) = [(𝑦, 𝑏) ∈ 𝑃(𝑥): 𝐷(𝑥, 𝜎𝑔
0𝑦, 𝜎𝑏

0𝑏) = 1], respectively. Following Kumbhakar et al. 

(n.d.), they estimate the direction distance function with the elements 𝜎𝑔𝑦 𝑎𝑛𝑑   𝜎𝑏𝑏, when the 

directional vector 𝑔 = (𝑏, 𝑦) is calculated “by utilizing the annual abatement schedules of pollutants 

and the production plans of good output as proxy variables for 𝑏 and 𝑦, respectively” (J.-D. Lee et al., 

2002, p. 371). Using this nonparametric approach and controlling for inefficiency, the shadow price of 

SOx, NOx and TSP is estimated for the electric power industry in Korea during the period of 1990-

1995 in a sample of 43 power plants. They found the average shadow prices “are approximately 10% 

lower than those calculated under the assumption of full efficiency”(J.-D. Lee et al., 2002, p. 365). 

Still this deterministic nonparametric approach cannot capture statistical noise – thus the data must be 

without error and the production model specified without omitting any inputs or outputs 

(Mekaroonreung & Johnson, 2012) – and is more sensitive to outliers than parametric methods. 

More recent nonparametric approaches, such as Convex Nonparametric Least Squares, (CNLS) as 

developed by Kuosmanen & Johnson (2008), deal with the two above drawbacks, i.e. sensitivity to 

outliers and exclusion of statistical inference. Kuosmanen & Kortelainen (2012) introduce a two-stage 

Stochastic Non-parametric Envelopment method (StoNED) that combines a nonparametric data 

envelopment analysis with a stochastic frontier analysis to decompose statistical noise and 

inefficiency. Mekaroonreung & Johnson (2012) extend the StoNED method by applying CNLS 

quadratic optimization to estimate a frontier production function and the shadow prices for SO2 and 

NOx emitted by US coal power plants.  

The studies that estimate the shadow price of emissions can be also differentiated according to level of 

data disaggregation or environmental domain that is examined. Regarding the former dimension, most 

of the studies are based on firm level data focusing on an individual sector (e.g. Färe et al., 1993; Färe, 

Grosskopf, Noh, & Weber, 2005;  Mekaroonreung & Johnson 2012; Park & Lim 2009), whereas there 

are some studies that estimated the shadow price of emissions at country level (e.g. Wu, Chen, & Liou 

(2013) or Salnykov & Zelenyuk (2004)). To our knowledge, only Peng et al. (2012) have estimated the 

shadow prices of pollutants using sector-level data. Considering the latter dimension of studies, most 

of the literature has dealt with airborne pollution and GHG (e.g. Boyd et al., 1996; Färe et al., 2005; 

John R. Swinton, 1998), while water pollution and other environmental burdens have been analysed 

less often (e.g. Färe et al., 1993; Hailu & Veeman, 2000; Marklund, 2003). 

 

Chyba! Nenalezen zdroj odkazů. provides a chronological overview of the shadow price estimates for air 

emissions.  
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Table 1 Chronological overview of emission shadow price estimates 

 

Notes: ODF – output distance function, IDF – input distance function, DDF – directional distance function, StoNED - Stochastic Non-parametric Envelopment method; aMichigan & 

Wisconsin; bWisconsin; cWisconsin, Illinois and Minnesota; dFlorida; e in 1995; fPost-Communist countries; gestimates for the Czech Republic; hmonthly data; imedian; javereages of the 

original year averages . 

      DATA       Shadow price estimates (€2005/t) 

Study Model Function Country 
Data 
type  

# obs. Period Sector CO2 SOx NOx PM 

Färe et al. (1993) ODF translog US
a
  firm 30 1976 pulp - 9,956 - 68,075 

Boyd et al. (1996) DDF nonparametric US firm 29 1989 power - 475 - - 

Coggins & Swinton (1996) ODF translog US
b 

firm  42 1990-92 power - 357 - - 

John R. Swinton (1998) ODF translog US
c
 firm  123 1990-92 power - 254 - - 

Kwon & Yun (1999) ODF translog Kor firm  57 1990-95 power 5.2 426 201 21,211 

Hailu & Veeman (2000) IDF translog Can sector 36 1959-94 pulp - - - - 

J.-D. Lee et al. (2002) DDF nonparametric Korea firm 258 1990-95 power - 3,791 21,219 62,334 

Swinton ( 2002) ODF 
transcendental 

logarithmic  
US

d
  firm 63 1990-98 power - 177 - - 

Marklund (2003) DDF quadratic Swe firm 86 1983-90 pulp - - - - 

Atkinson & Dorfman (2005) IDF Bayesian approach US firm 

 

1980, 5, 90, 5   power - 502
e
  - - 

Färe et al. (2005) DDF quadratic / stochastic US firm 418 1993&97 power - 1,506/ 106 - - 

M. Lee (2005) IDF translog US firm 380 1977-86 power - 451 - 344 (ash) 

Maradan & Vassiliev (2005) DDF nonparametric World country 76 1985 econ. 2.1 - 9.6 - - - 

Gupta (2006) ODF translog India plant 
 

1990-2000 power 67.6; 48 
   

Salnykov & Zelenyuk (2004) DDF translog PCC
f
 country 96 1995 econ. 115

g 
5,485

g
 57,805

g
 - 

Murty, Kumar, & Dhavala (2006) DDF quadratic Ind firm  480
h
 1997-2004 power - 51 182 130 

Rezek & Campbell (2007) ODF Cobb-Douglas/RGME US plant 260 1998 power 17 278 883   

Bauman et al. (2008) ODF translog Kor sector 29 1970-98 power - 225 - - 

Rečka & Ščasný (2011) IDF quadratic CZE firm 53 2002-2007 power - 1,198
i
 2,805

i
 5,223

i
 

Mekaroonreung & Johnson (2012)   StoNED 
 

US Boiler 3024 2000-2008 power  207
j 

763
j 

 

This study StoNED 
 

CZE sector 324 2000-2008 all - 878
 i
 - - 
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3 METHODS 
 

Following Mekaroonreung & Johnson (2012) and Shephard (1970) we define the production 

possibility set. For each industry 𝑖 = 1, … , 𝑛  let 𝑥 ∈ 𝑅+
𝑀 is a vector of inputs, 𝑦 ∈ 𝑅+

𝑆  is vector of good 

outputs and 𝑏 ∈ 𝑅+
𝐽
 is a vector of bad outputs. The basic characterization of the polluting production 

technology is the technology set 𝑇 of all feasible input-output combination: 𝑇 = [(𝑥, 𝑦, 𝑏) ∶
𝑥 can produce (𝑦, 𝑏) ]. 𝑇 is convex and there are variable returns to scale. 

The production technology satisfies the following assumption, orginaly proposed by Shephard (1970): 

1. Free disposibility of inputs:  

if (𝑥, 𝑦, 𝑏) ∈ 𝑇and �́� ≥ 𝑥, then (�́�, 𝑦, 𝑏) ∈ 𝑇. 

 

2. Free disposability of good outputs: 

if (𝑥, 𝑦, 𝑏) ∈ 𝑇 and 𝑦0 ≤ 𝑦 then (𝑥, 𝑦0, 𝑏) ∈ 𝑇. 

 

3. Weak disposibility between good and bad outputs: if (𝑥, 𝑦, 𝑏) ∈ 𝑇 and 0 ≤ 𝜃 ≤ 1 then 

(𝑥, 𝜃𝑦, 𝜃𝑏) ∈ 𝑇. 

The variable returns to scale weakly disposable production possibility set 𝑇 can then be rewritted as 

(Mekaroonreung & Johnson  (2012) ): 

𝑇 = {(𝑥, 𝑦, 𝑏) ∈ 𝑅+
𝑀+𝑆+𝐽|𝑥 ≥ ∑(𝜆𝑖 + 𝜇𝑖)𝑥𝑖 ; 𝑦 ≤ ∑ 𝜆𝑖𝑦𝑖

𝑛

𝑖=1

;

𝑛

𝑖=1

 𝑏 ≥ ∑ 𝜆𝑖𝑏𝑖

𝑛

𝑖=1

; ∑(𝜆𝑖 + 𝜇𝑖)

𝑛

𝑖=1

= 1,   𝜆𝑖, 𝜇𝑖 ≥ 0} 

(1)  

where 𝜆𝑖  allows the convex combination of observed industries and 𝜇𝑖 allows to scale down both good 

outputs and bad ouputs while maintaining the level of inputs. Note that the inequality in bad output 

constrains implies a negative shadow price on additional pollution which satisfies the economic 

intuition incurring certain costs in production (Mekaroonreung & Johnson, 2012). 

 

We apply the CNLS technique with composite disturbance term considering a single output production 

function with a multiplicative disturbance term: 

 𝑦𝑖 = 𝑓(𝑥𝑖, 𝑏𝑖) exp(𝜖𝑖)    ∀𝑖 = 1, … , 𝑛 (2)  
 

where 𝑓(𝑥𝑖, 𝑏𝑖) satisfies continuity, monotonicity, concavity and weak disposability; 𝜖𝑖 is disturbance 

term and the bad outputs are treated as independent variables, as in Cropper & Oates (1992). 

Applying the log transformation to (2) we obtain (3): 

 𝜖𝑖 = ln(𝑦𝑖) − ln(𝑓(𝑥𝑖, 𝑏𝑖)) (3)  

 

Following Mekaroonreung & Johnson (2012) we assume statistical noise in the data and therefore the 

disturbance term can be written as: 

𝜖𝑖 = 𝑣𝑖 − 𝑢𝑖  ∀𝑖 = 1, … , 𝑛 (4)  

where 𝑣𝑖 is a random noise component. 
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Because – as Kuosmanen & Kortelainen (2012) point out – the composite disturbance term in (4) 

violates the Gauss-Markov properties that 𝐸(𝜖𝑖) = 𝐸(−𝑢𝑖) = −𝜇 < 0, the composite disturbance term 

is modified and the multiplicative disturbance production model 𝑦𝑖 =  𝑓(𝑥𝑖, 𝑏𝑖)exp (𝜖𝑖) is written as in 

Mekaroonreung & Johnson (2012): 

ln(𝑦𝑖) = [ln(𝑓(𝑥𝑖, 𝑏𝑖 )) − 𝜇] + [𝜖𝑖 + 𝜇] = ln(𝑔(𝑥𝑖, 𝑏𝑖 )) + 𝜈𝑖   ∀𝑖 = 1, … , 𝑛 (5)  

where 𝜈𝑖 = 𝜖𝑖 + 𝜇 is the modified composite disturbance term and 𝐸(𝜈𝑖) = 𝐸(𝜖𝑖 + 𝜇)=0. The CNLS 

problem is then defined as follows:  

min
𝛼,𝑤,𝑐,𝜈

∑ 𝜈𝑖
2

𝑛

𝑖=1

 

s.t. 𝜈𝑖 = ln(𝑦𝑖) − ln(𝛼𝑖 + 𝑤𝑖
′𝑥𝑖 − 𝑐𝑖

′𝑏𝑖)     ∀𝑖 = 1, … , 𝑛 

        𝛼𝑖 + 𝑤𝑖
′𝑥𝑖 − 𝑐𝑖

′𝑏𝑖 ≤ 𝛼ℎ + 𝑤ℎ
′ 𝑥𝑖 − 𝑐ℎ

′ 𝑏𝑖     ∀𝑖, ℎ = 1, … , 𝑛 

 𝛼𝑖 + 𝑤𝑖
′𝑥ℎ ≥ 0  ∀𝑖, ℎ = 1, … , 𝑛 

 𝑤𝑖 , 𝑐𝑖 ≥ 0    ∀𝑖 = 1, … , 𝑛 

(6)  

 

where 𝑤𝑖 = (𝑤𝑖1, … , 𝑤𝑖𝑀) and 𝑐𝑖 = (𝑐𝑖1, … , 𝑐𝑖𝐽) are marginal products of good output and bad output, 

respectively. 

The technical efficiency and statistical noise components are separated using the estimated modified 

CNLS residuals �̂�𝑖 from (6) in the second stage of CNLS. Assuming technical efficiency is 

independent and identically distributed (i.i.d.) and has a half normal distribution and the statistical 

noise is i.i.d. and normally distributed, 𝑢𝑖~|𝑁(0, 𝜎𝑢
2)| and 𝑣𝑖~𝑁(0, 𝜎𝑢

2), the method of moments 

(Aigner, Lovell, & Schmidt, 1977) is applied as in Mekaroonreung & Johnson (2012): 

�̂�𝑢 = √
�̂�3

(
2

𝜋
)(1−

4

𝜋
)

3
 and �̂�𝑣 = √�̂�2 − (

𝜋−2

𝜋
) �̂�𝑢

2  (7)  

where �̂�2 =
1

𝑛
∑ (�̂�𝑖 − �̂�(𝜈𝑖))

2
𝑛
𝑖=1 and �̂�3 = ∑ (�̂�𝑖 − �̂�(𝜈𝑖))

3
𝑛
𝑖=1 . 

The average production function 𝑔(𝑥𝑖, 𝑏𝑖) is obtained from the CNLS problem (6) and it is multiplied 

by the expected technical efficiency to estimate the production function: 

ln(�̂�(𝑥𝑖, 𝑏𝑖)) = [ln (𝑓(𝑥𝑖, 𝑏𝑖)) − �̂�] = ln(𝑓(𝑥𝑖, 𝑏𝑖) − 𝑒𝑥𝑝(−�̂�)), thus 

𝑓(𝑥𝑖, 𝑏𝑖) = �̂�(𝑥𝑖, 𝑏𝑖)exp (�̂�) 
(8)  

where �̂� = �̂�𝑢√
2

𝜋
. 

Jondrow et al. (1982) decomposition can be applied to estimate industry specific inefficiency based on 

�̂�𝑢 and �̂�𝑣: 

�̂�(𝑢𝑖|𝜖�̂�) = −
𝜖�̂��̂�𝑢

2

�̂�𝑢
2 + �̂�𝜈

2 +
�̂�𝑢

2�̂�𝜈
2

�̂�𝑢
2 + �̂�𝜈

2 [
𝜙(𝜖�̂� �̂�𝜈

2⁄ )

1 − Φ(𝜖�̂� �̂�𝜈
2⁄ )

] (9)  

where 𝜖�̂� = �̂�𝑖 − �̂�, 𝜙 is the standard normal density function and Φ is the standard normal cumulative 

distribution. 
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3.1 Shadow Price Of Emissions 
 

Assuming profit-maximizing behaviour for all firms in each industry, the profit maximization problem 

for a production process with outputs and pollutants (i.e. bad outputs) is the following: 

𝜋(𝑝𝑦, 𝑝𝑏 , 𝑝𝑥) = max
𝑦,𝑏,𝑥

𝑝𝑦
′ 𝑦 − 𝑝𝑏

′ 𝑏 − 𝑝𝑥
′ x 

s.t. (𝐹((𝑥, 𝑏, 𝑦)) = 0) 
(10)  

where 𝑝𝑦 = (𝑝𝑦1
, … , 𝑝𝑦𝑆

),𝑝𝑏 = (𝑝𝑏1
, … , 𝑝𝑏𝐽

), 𝑝𝑥 = (𝑝𝑥1
, … , 𝑝𝑥𝑀

) are the price vectors of outputs, 

pollutants and inputs, respectively. As in Mekaroonreung & Johnson (2012) 𝐹(𝑥, 𝑏, 𝑦) is the 

transformation function corresponding to a multi-output production function and since the shadow 

price of pollutants are our focus, the constrain 𝐹(𝑥, 𝑏, 𝑦) = 0 is imposed in order to consider only the 

production possibility set. Applying the method of Lagrangian multipliers to (7) and following Färe et 

al. (1993), the relative shadow price of pollutants for industry 𝑖 are estimated as follows: 

𝑝𝑏𝑖𝑗
= 𝑝𝑦𝑖

𝜕𝑓(𝑥𝑖, 𝑏𝑖)

𝜕𝑏𝑖𝑗
 (11)  

where 𝑝𝑦𝑖
is price of and output of industry 𝑖. Since we use gross value added as a proxy of the 

industry’s output, 𝑝𝑦𝑖
= 1. By solving the CNLS problem (6) we estimate first the average weak 

disposability production function �̂�(𝑥𝑖, 𝑏𝑖) and second we calculate the estimated expected inefficiency 

components �̂�. The relative shadow price of pollutants for each industry is obtained as 
𝜕�̂�(𝑥𝑖,𝑏𝑖)

𝜕𝑏𝑖𝑗
exp(�̂�) = 𝑐�̂�𝑗exp (�̂�), where the variable 𝑐�̂�𝑗 ∈ 𝑐�̂� = (𝑐�̂�1, … , 𝑐�̂�𝐽) results from solving (6).  

 

3.2 Externality 
 

Emissions of air pollutants have adverse impacts on human health, biodiversity, crops, and building 

materials (Máca, Melichar, & Ščasný, 2012). We quantify these impacts using the ExternE method and 

the impact pathway analysis in particular (see, for instance, Preiss et al. (2008) or Weinzettel et al. 

(2012)). The ExternE Impact Pathway Approach consists of four steps: it starts with the emission of a 

pollutant at the location of the source into the environment. Then the dispersion and chemical 

transformation of pollutants in the different environmental media are modelled in the second step. 

Physical impacts, such as new cases of respiratory illness for example, are linked with changes in 

concentrations in the atmosphere by concentration-response functions. Introducing receptors and 

population data, the cumulative exposure of the receptors is calculated and total physical impacts are 

derived. In the last step, the physical impacts are monetised. 

The marginal damage cost of SO2 released in the Czech Republic under the Average Height of Release 

scenario
2
 is estimated at the value of 7,235€ per ton of SO2 (Preiss et al., 2008). This estimate includes 

damages associated with adverse impacts not only in the Czech Republic but also across the whole of 

Europe.  

 

 

                                                             
2 Damage of airborne pollution is significantly influenced by height of stack releasing pollution 
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4 DATA 
 

Our balance panel includes industry-level NACE tier 2 data for 36 sectors of the Czech economy for 

the period 2000 to 2008.
3
 We use industry specific gross value added (GVA) in constant prices as a 

proxy for desirable output. Gross stock of fixed assets is expressed in constant prices, labour in full 

time equivalents of persons (L), and energy (E) in gigajoules constitute inputs, while SO2 emissions in 

tons comprise the undesirable output. The whole data set is obtained from the Czech Statistical Office, 

all monetary values are expressed in Euros c.p. 2000. The GVA was selected as a variable for output 

because it is not dependent on intermediate inputs and, as a result, we can omit the intermediate inputs 

from our model and increase the degree of freedom of our CNLS problem. 

 

 

5 RESULTS 
 

Our results obtained from (11) support our hypothesis that the sectors with low production of SO2 

emission might have higher shadow prices of SO2 than the sectors with a high volume of SO2. On 

average, the highest shadow price of SO2 – above 4,000€ per ton of SO2 – is estimated for ‘Motor 

vehicles’, ‘Water’, and ‘Rubber & Plastics’, while the lowest time-average of SO2 shadow prices are 

estimated for ‘Chemicals’ (219€) and ‘Textile’, ‘Furniture’, ‘Other mining’, ‘Wood’, and ‘Food’, 

ranging from 539€ to 686€. In the remaining sectors, the average estimated shadow price of SO2 varies 

between 757€ and 2,678€ per ton of SO2. 

In the Electricity, gas & hot water sector – which releases the highest volume of SO2 emission – the 

average shadow price during the period 2000 to 2008 is 764€, and the shadow price have decreasing 

trend from more than 1000€ to 327€ in 2008. These results correspond to the previous estimates we 

obtained by using IDF method (Rečka & Ščasný, 2011); the median of shadow price of SO2 was 

estimated at 1,491€ and 847€ for power plants with main fuel other than brown coal  and brown coal 

power plants in the Czech Republic in the period 2002-2007, respectively.  

                                                             
3 From the original 59 sectors we construct 9 years balanced panel data set. We exclude 23 sectors with negative values of 

GVA in some years or with negligible levels of SO2 emissions. 
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Figure 1 Shadow price of SO2 emission in Czech industries (2000,  2008 and average) 

 

 

Figure 2. SO2 emissions in Czech industries (2000,  2008 and average)
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Although the shadow price of SO2 significantly varies across the sectors, the shadow price decreases 

over time in all of them, except manufacture of Other transport equipment and Retail trade (Figure 1). 

 

 

Figure 3. Weighted average of SO2 shadow price  

The average, weighted by industry SO2 emission, shadow price of SO2 decreases over time, especially 

from 2003, starting at above 1,000€ per ton of SO2 in 2000 and reaching its minimum at 360€ in 2006 

(Figure 3).The weighted average of SO2 shadow price over the whole period is 834€.   Our results are 

in line with the technology specific marginal abatement cost (MAC) as estimated for the Czech 

Republic by other approaches; for instance, the MACs of ton SO2 derived from the GAINS database 

on the costs and technical potential of current and prospected abatement technologies (Ščasný, Pavel, 

& Rečka, 2008) are in the range of 430 to 4,000 €, and the implicit MACs derived from the 

computable general equilibrium GEM-E3 model (Pye er  al. 2008) are between 545 and 785 € per ton 

of SO2.
4
 

We also found that the SO2 shadow prices are in almost all sectors smaller than the magnitude of the 

external cost associated with SO2 emissions, that is 7,235€ per each ton. The only three  exceptions, 

‘Rubber & Plastics’,’Water’ and ‘Motor vehicles’ sectors, for which  we record a higher shadow price 

for SO2 than the corresponding external cost in year 2001. However these three sectors release only a 

negligible amount of SO2 emissions with very limited potential to reduce them (see Figure 2). 

 

6 CONCLUSIONS 
 

This paper estimates the shadow prices of SO2 emissions for industrial sectors in the Czech Republic 

during the post-transition period 2000-2008. We rely on the CNLS quadratic optimization that allows 

the estimation of shadow prices jointly with analysis of technical efficiency and the capture of possible 

statistical noise in the data. We find the shadow price ranges between 200€ to 9,000€ per ton of SO2, 

and sector averages vary between 219€ and 4,764€, with the mean of 764€ in the most polluting power 

sector. Our recent results for the power sector estimated by the StoNED method are comparable with 

                                                             
4 All estimates are in €2005. 
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our previous estimates of the SO2 shadow prices that we estimated on the firm-level data from power 

sector by following the non-parametric method based on the output distance function. 

Our findings show a strong decreasing trend in the average magnitude of the shadow prices over time, 

especially during 2001-2006. We note that the Czech Republic became a full member of the European 

Union on May 1
st
, 2004, and from this time Czech firms can freely participate in the European 

economic market and hence import advanced technologies without paying duties.  

We also conclude that current regulation is far from the economic optimum, since in many sectors the 

estimated SO2 shadow prices are much lower than the marginal damage cost, that is 7,235€ per ton of 

SO2. For example, the average SO2 shadow prices in the two most emitting sectors – ‘Electricity, gas 

& hot water’ and ‘Chemical’s – are 769€, or 219€, respectively.  

The magnitude of shadow prices of SO2 emissions is also very far from the rates of SO2 emission 

charges being currently enforced, having its rate below 40€ per ton (Máca et al., 2012). Considering 

the magnitude of the shadow prices, we also conclude that to date air quality regulation based on 

market-based instruments in the Czech Republic have been ineffective and economically sub-optimal. 

As shown by Máca et al. (2012), the level of internalization of the external costs associate with air 

quality pollutants and attributable to the power sector has remained rather low, up to 55% in the case 

of coal-fired power plants. As of 2016, a new pricing system for SO2 discharges will be introduced in 

the Czech Republic, which proposes a gradual increase in the charge from actual 36 €/ton of SO2 to 

175 €/ ton after 2021. Despite this new regulation, the new level of emission charge rate is at least one 

order of magnitude lower than our estimate of shadow prices for SO2 emissions.  

Assuming full efficiency in this study – contrary to Lee (2002) – our estimates of shadow prices may 

be biased slightly upward. We are aware of the fact that the top-down approach, as followed in this 

analysis, can’t fully reveal all aspects of the costs that in reality, all play their role. In particular, 

additional costs associated with abatement in industrial companies can be involved by other non-

environmental regulations, such as requirements on higher safety standards. This analysis merely aims 

at estimation of the shadow prices of undesirable outputs, such as air emissions, and it cannot serve to 

examine the effect of all other possible factors on the abatement costs, cost effectiveness or on the 

emission reduction potential.  
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