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Abstract. We consider a general framework for computing the aggregate human capital
stock under heterogeneity across population cohorts, distinguishing between aggregate hu-
man capital stocks in the whole population and in the labor force. Based on this framework,
we find that the “macro-Mincer” (log-linear) relationship between aggregate human capital
and average years of schooling obtains only in cases which are inconsistent with hetero-
geneity in years of schooling and based on empirically implausible demographic survival
laws.
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1 Introduction
The recent literature has questioned the prevalent view that the log-linear Mincer (i.e., “micro-
Mincer”, cf. Mincer, 1974) relationship between individual wages (or human capital stocks) and
years of schooling can be carried forward to country-level data on aggregate human capital stocks
and average years of schooling (cf. Krueger and Lindahl, 2001, Bloom et al., 2004), from a number
of standpoints:

• the “macro-Mincer” approach assumes perfect substitutability between unskilled and skilled
labor (Pandey, 2008, Jones, 2011a, 2011b),

• it assumes that each individual’s skill level can be summarized by a single number and thus
there is no heterogeneity in tasks (Jones, 2011b),

• it considers years of schooling as an exogeneous variable and thus neglects individuals’
optimal decisions on the duration of their schooling (Jones, 2011a),
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• it neglects the fact that maintaining a constant aggregate level of human capital in the so-
ciety requires replacement investment, because human capital is embodied in people whose
lifetimes are finite (Growiec, 2010).

Violation of any of the above assumptions has been shown to lead to significant departures from
the baseline “macro-Mincer” relationship between the aggregate human capital stock and average
years of schooling.

The objective of the current note is to add to the last line of criticisms of the “macro-Mincer”
approach by emphasizing two important theoretical points, not addressed so far in the literature.
First, based on a general framework for computing the aggregate human capital stock under het-
erogeneity across cohorts, building on Growiec (2010), we shall show that the “macro-Mincer”
relationship between aggregate human capital and average years of schooling is generally lost
upon aggregation. More precisely, we find that even if the cross-sectional “micro-Mincer” rela-
tionship does hold at the level of individuals, the “macro-Mincer” equation can be obtained only
in very special cases. We proceed to explain that these cases are inconsistent with heterogeneity,
insofar they require the aggregated individuals to have an equal number of years of schooling. Fur-
thermore, in the case where individuals first attend school full time and then work full time, the
“macro-Mincer” equation requires the demographical survival law to have the “perpetual youth”
property (Blanchard, 1985), which is empirically implausible.

Second, we shall also demonstrate an important difference in aggegation results whether human
capital stocks in the whole population or in the labor force are considered. In particular, the
“macro-Mincer” relationship can only be obtained (under additional restrictions) for the latter case
but not for the former. In the empirical literature (see e.g., Caselli and Coleman, 2006), the macro-
Mincer approach is often applied to educational attainment of the whole population, though – or
at least of the whole working-age population (which is somewhat closer to our definition). Our
analysis strongly suggests that these concepts should not be used interchangeably.

In all our calculations, we shall maintain the assumption that skill levels are perfectly substi-
tutable and there is no intra-cohort heterogeneity of tasks or skills. Hence, all heterogeneity con-
sidered here comes from the fact that people are born at different times, and gradually accumulate
human capital across their lives. By making these assumptions, we attempt to isolate the effects
coming from the heterogeneity of human capital due to demographics alone. Adding intra-cohort
heterogeneity to the picture is left for further research.

2 Aggregation of human capital across population cohorts

2.1 Framework
We denote the current calendar time as t, and a person’s age as τ . A person who is τ years old
in year t must have thus been born at t − τ . At time t, there is a continuum of mass N(t) of
individuals. Our results are obtained under the following assumptions.

Assumption 1 Human capital of the representative τ years old individual born at time t is accu-
mulated using the linear production function:

∂

∂τ
h(t, τ) = [λ`h(t, τ) + µ`Y (t, τ)]h(t, τ), (1)

2



where λ ≥ 0 denotes the unit productivity of schooling, and µ ≥ 0 denotes the unit productivity
of on-the-job training (experience accumulation). `h(t, τ) ∈ [0, 1] is the fraction of time spent by
an individual born at t and aged τ on formal education, whereas `Y (t, τ) ∈ [0, 1] is the fraction of
time spent at work. We assume `h(t, τ) + `Y (t, τ) ≤ 1 for all t, τ ≥ 0, and take h(t, 0) ≡ h0 > 0.

Even though the current framework singles out the time spent on education and work only,
it can easily accomodate other uses of time, such as leisure or childrearing. In particular, we
thus also allow for retirement. We shall say that these alternative possibilities are exercised when
`h(t, τ) + `Y (t, τ) < 1.

Equation (1) can be easily integrated with respect to the individual’s age, to yield the human
capital stock of an individual born at t, aged τ :

h(t, τ) = h0 exp

[
λ

∫ τ

0

`h(t, s)ds+ µ

∫ τ

0

`Y (t, s)ds

]
. (2)

This is directly the “micro-Mincer” equation, signifying the log-linear relationship between the
individuals’ human capital and their cumulative stocks of education and work experience.

Assumption 2 At every age τ ≥ 0, the individual may either survive or die. The unconditional
survival probability is denoted by m(τ), with m(0) = 1, limτ→∞m(τ) = 0 and with m(τ) weakly
decreasing in its whole domain. The survival probability does not depend on calendar time t.

Please note that by assuming the survival law to be independent of t, we exclude the possibility
of declining mortality due to, e.g., progress in medicine. Accomodating this possibility is left for
further research.

Assumption 3 The age structure of the society (the cumulative density function) is stationary. At
time t, there are P (t, τ) = bN(t − τ)m(τ) people aged τ in the population. The total population
alive at time t is N(t), with

N(t) =

∫ ∞
0

P (t, τ)dτ =

∫ ∞
0

bN(t− τ)m(τ)dτ. (3)

The total labor force at time t is computed as

L(t) =

∫ ∞
0

P (t, τ)`Y (t− τ, τ)dτ =

∫ ∞
0

bN(t− τ)m(τ)`Y (t− τ, τ)dτ. (4)

By the virtue of the Law of Large Numbers, the above assumption implies that the aggregate
birth rate b and death rate d are constant. This in turn implies a constant population growth rate,
and thus N(t) = N0e

(b−d)t. In consequence, the shares of all vintages in the total population are
indeed constant:

P (t, τ)

N(t)
= bm(τ)

N(t− τ)

N(t)
= bm(τ)e−(b−d)τ , independently of t. (5)

Furthermore, the death rate d is computed uniquely from the given survival law m(τ). If the
birth rate times life expectancy at birth exceeds unity, then b > d and thus the total population is
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growing. If this product is less than unity, then b < d and thus the population is declining (for the
derivation, please refer to Appendix A.6 in Growiec, 2010).

The first corollary from our assumptions is that, under stationary age structure, and assuming
that time profiles of education and work are independent of calendar time t, i.e., `h(t, τ) ≡ `h(τ)
and `Y (t, τ) ≡ `Y (τ), it must be the case that the human capital stock of an individual h(t, τ)
depends only on her age τ , but not on the year when she was born, t. Despite exponential growth
in each individual’s human capital across time, we thus have h(t, τ) ≡ h(τ) (see the discussion in
Growiec, 2010).

Under the aforementioned stationarity assumptions, it also follows that the employment rate in
the economy L(t)

N(t)
is independent of calendar time t, too:

L(t)

N(t)
=

∫∞
0
bN(t− τ)m(τ)`Y (τ)dτ

N(t)
=

∫ ∞
0

be−(b−d)τm(τ)`Y (τ)dτ. (6)

Let us now place some restrictions on the considered stationary time profiles of education
and work. We shall deal with three alternative, naturally understandable scenarios which can be
considered as limiting cases of more general time profiles:

• Case “S+W”. First attend school full time, until you reach S years of age, and then work
full time until death:

`h(t, τ) =

{
1, τ ≤ S,

0, τ > S,
`Y (t, τ) =

{
0, τ ≤ S,

1, τ > S.
(7)

• Case “S+W+R”. First attend school full time, until you reach S years of age; then work full
time, until you reach R years of age, then retire, and stay retired until death:

`h(t, τ) =

{
1, τ ≤ S,

0, τ > S,
`Y (t, τ) =

{
0, τ ∈ [0, S] ∪ [R,+∞),

1, τ ∈ (S,R).
(8)

• Case “Fix”. Spend fixed fractions of time on schooling and work throughout your entire
life:

`h(t, τ) ≡ ¯̀
h, `Y (t, τ) ≡ ¯̀

Y . (9)

Please note that years of schooling are directly captured by S in the cases “S+W” and “S+W+R”.
On the other hand, there is no direct equivalent of S in the case “Fix”. However, one can proxy
years of schooling by the schooling intensity ¯̀

h. We shall adopt this convention in our further
considerations.

In accordance with Assumptions 1–3, we shall make use of the following definitions.

Definition 1 The aggregate human capital stock of the whole population alive at time t is given
by:

HPOP (t) =

∫ ∞
0

P (t, τ)h(t− τ, τ)dτ. (10)

Human capital stocks provided by individuals of all ages are perfectly substitutable. The average
human capital stock in the population is hPOP (t) = HPOP (t)

N(t)
.

4



Definition 2 The aggregate human capital stock of the labor force working at time t is given by:

HLF (t) =

∫ ∞
0

P (t, τ) (`Y (t− τ, τ)h(t− τ, τ)) dτ. (11)

Labor services provided by individuals of all ages are perfectly substitutable. The average human
capital stock in the labor force is hLF (t) = HLF (t)

L(t)
.

Let us now present our results under two specific survival laws m(τ), and then provide more
general considerations relating to the (im)possibility and (im)plausibility of obtaining the “macro-
Mincer” result, postulated in the related empirical literature.

2.2 Results under the “perpetual youth” survival law
Apart from Assumptions 1–3, let us now also assume the Blanchard’s (1985) simple “perpetual
youth” survival law m(τ) = e−dτ , where d is directly the aggregate death rate. Under this con-
dition, the stationary age structure satisfies P (t,τ)

N(t)
= be−bτ . The results are presented in Table 1.1

We consider average human capital stocks instead of aggregate ones there, as they are – given the
stationary age structure of the population – independent of calendar time t.

Table 1: Average human capital stocks under the “perpetual youth” survival law.
Case hPOP (t) hLF (t)

S+W bh0
b−λ

(
1− e(λ−b)S)+ bh0

b−µe
(λ−b)S bh0

b−µe
λS

S+W+R bh0
b−λ

(
1− e(λ−b)S)

+ bh0
b−µ

(
e(λ−b)S − e(λ−µ)S+(µ−b)R)

+h0e
(λ−µ)S+(µ−b)R

bh0
b−µ

e(λ−b)S−e(λ−µ)S+(µ−b)R

e−bS−e−bR

Fix bh0
b−λ¯̀

h−µ¯̀
Y

bh0
b−λ¯̀

h−µ¯̀
Y

In the case “S+W”, HLF (t) is computed by aggregating individuals above the age S only,
whereas HPOP (t) is a sum of HLF (t), i.e., human capital of the workers (or equivalently, working-
age population), and human capital of younger individuals who are still at school. In this case, the
share of the working population is constant and equal to L(t)

N(t)
= e−bS .

In the case “S+W+R”, HLF (t) is computed by aggregating individuals aged between S and
R only, whereas HPOP (t) supplements this stock with the human capital of younger and older
individuals. In this case, the share of the working population is fixed at L(t)

N(t)
= e−bS − e−bR.

The case “Fix” has already been considered by Growiec (2010), who concentrated on HPOP (t)
and did not compute HLF (t). With a fixed share of time spent on work irrespective of individuals’
age, the it is however clear that HLF (t) = ¯̀

YHPOP (t), so that the qualitative results for both
aggregates are identical up to a multiplicative constant. Also, the share of the working population
is naturally L(t)

N(t)
= ¯̀

Y , and thus hLF (t) = hPOP (t).

1In case λ = b, the formula bh0

b−λ
(
1− e(λ−b)S

)
should be replaced by bh0S in the hPOP (t) column. Further-

more, if µ = b in the case “S+W+R” then the formula bh0

b−µ
(
e(λ−b)S − e(λ−µ)S+(µ−b)R) should be replaced by

bh0e
(λ−b)S(R− S).

5



To ensure that the aggregate human capital stock remains finite under the considered survival
law, we must assume that µ < b in the case “S+W”, and λ¯̀

h − µ¯̀
Y < b in the case “Fix”.

As regards the derivation of the “macro-Mincer” equation, we note the following straightfor-
ward proposition.

Proposition 1 (Sufficient conditions for “macro-Mincer”) Let Assumptions 1–3 hold and as-
sume the “perpetual youth” survival law. Then the “macro-Mincer” equation holds for the labor
force (but not the whole population):

• under the “S+W” scenario,

• under the “S+W+R” scenario, but only if there is no on-the-job training (µ = 0).

The Mincerian exponent is then equal to the individual rate of return to education λ. Apart from
these two cases, the “macro-Mincer” equation does not hold.

As we shall see shortly, under the “S+W” scenario, the “macro-Mincer” result actually requires
the survival law to satisfy the Blanchard’s (1985) “perpetual youth” property. Unfortunately, the
“perpetual youth” survival law is highly implausible empirically: it implies that irrespective of age,
individuals face the same unconditional probability of dying next year. According to empirical
evidence (cf. e.g., Boucekkine et al., 2002), this is clearly not the case, not even approximately.2

One further important caveat here is that the “macro-Mincer” relationship obtained in the cur-
rent section is inconsistent with heterogeneity in years of schooling. It is obtained for HLF (t) in
the case “S+W”, which requires that every worker (i.e., every person above the age S) has the
same level of education, h0e

(λ−b)S . All potential differences in workers’ human capital are driven
by differences in work experience, which is gradually accumulated at work if µ > 0. Even more
strikingly, under the “S+W+R” scenario with µ = 0, the “macro-Mincer” equation requires not
only years of schooling to be equal across the population, but also the individuals’ levels of work
experience.

2.3 Results under fixed lifetimes
Let us now substitute the Blanchard’s (1985) “perpetual youth” survival law with the assumption
that individuals’ lifetimes are deterministically fixed at T , i.e., m(τ) = 1 for τ < T and m(τ) = 0

for τ ≥ T , with T > S and T ≥ R. Under this condition, the age structure satisfies P (t,τ)
N(t)

=

be−(b−d)τ for τ < T and zero otherwise. The aggregate death rate d is related to the age T via the
equality T = ln b−ln d

b−d . It is obtained that b > d if and only if T > 1/b.
The results for this case are presented in Table 2.
Under the currently considered survival law where lifetimes are bounded, aggregate human

capital is always finite. From Table 2, it should also be clear that under fixed lifetimes, reproducing
the “macro-Mincer” equation is possible only if there is no on-the-job training (µ = 0):

Proposition 2 (Sufficient conditions for “macro-Mincer”) Let Assumptions 1–3 hold and as-
sume that the individuals have a fixed lifetime T . Then the “macro-Mincer” equation holds for the
labor force (but not the whole population):

2Though it might be an accurate description of survival laws for very poor, war-ridden regions or ancient-to-
medieval times.
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Table 2: Average human capital stocks under fixed lifetimes.
Case hPOP (t) hLF (t)

S+W bh0
b−d−λ

(
1− e(λ−(b−d))S

)
+ bh0e(λ−µ)S

b−d−µ
(
e(µ−(b−d))S − e(µ−(b−d))T

) (b−d)h0e(λ−µ)S

b−d−µ
e(µ−(b−d))S−e(µ−(b−d))T

e−(b−d)S−e−(b−d)T

S+W+R bh0
b−d−λ

(
1− e(λ−(b−d))S

)
+ bh0
b−d−µ

(
e(λ−(b−d))S − e(λ−µ)S+(µ−(b−d))R

)
+ bh0
b−d

(
e(λ−µ)S+(µ−(b−d))R − e(λ−µ)S+µR−(b−d)T

)
(b−d)h0
b−d−µ

e(λ−(b−d))S−e(λ−µ)S+(µ−(b−d))R

e−(b−d)S−e−(b−d)R

Fix bh0
b−d−λ¯̀

h−µ¯̀
Y

(
1− eλ¯̀

h+µ¯̀
Y −(b−d)T

)
bh0

b−d−λ¯̀
h−µ¯̀

Y

(
1− eλ¯̀

h+µ¯̀
Y −(b−d)T

)

• under the “S+W” scenario with µ = 0,

• under the “S+W+R” scenario with µ = 0.

The Mincerian exponent is then equal to the individual rate of return to education λ. Apart from
these two cases, the “macro-Mincer” equation does not hold.

2.4 The case without on-the-job training
The case without on-the-job training (µ = 0) has already stood out as a very specific case in our
above calculations. It is no coincidence. Actually, we can straightforwardly generalize our above
considerations, yielding the following proposition:

Proposition 3 (Sufficient condition for “macro-Mincer”) Let Assumptions 1–3 hold and assume
µ = 0. Then under the “S+W” and “S+W+R” scenarios, the “macro-Mincer” equation holds for
the labor force hLF (t) regardless of the underlying survival law m(τ). The Mincerian exponent is
equal to the individual rate of return to education λ.

Proof. Using equations (5)–(6), under the “S+W” scenario we have:

hLF (t) =

∫ ∞
0

P (t, τ)

L(t)
`Y (t− τ, τ)h(t− τ, τ)dτ =

∫ ∞
S

h0e
λSbe−(b−d)τm(τ)

N(t)

L(t)
dτ =

= h0e
λS

∫∞
S
be−(b−d)τm(τ)dτ∫∞

S
be−(b−d)τm(τ)dτ

= h0e
λS. (12)

Using equations (5)–(6) again, under the “S+W+R” scenario we have:

hLF (t) =

∫ ∞
0

P (t, τ)

L(t)
`Y (t− τ, τ)h(t− τ, τ)dτ =

∫ R

S

h0e
λSbe−(b−d)τm(τ)

N(t)

L(t)
dτ =

= h0e
λS

∫ R
S
be−(b−d)τm(τ)dτ∫ R

S
be−(b−d)τm(τ)dτ

= h0e
λS.� (13)

The above result is driven by two crucial facts. First, the “S+W” and “S+W+R” scenarios
require all working individuals to have the same number of years of schooling. They are therefore
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inconsistent with heterogeneity in years of schooling among the working population. Second,
the assumption µ = 0 (absence of on-the-job training) implies that all working individuals also
have the same human capital level. The aggregation is thus done across entirely homogeneous
population cohorts. In such a situation, it is no surprise that the Mincerian relationship between
human capital and years of schooling is directly transferred from the individual to the aggregate
level.

2.5 Necessary conditions for the “macro-Mincer” equation
Let us now ask the converse question: for which survival law m(τ) will the “macro-Mincer”
equation be recovered from the micro-level Mincerian relationship. Growiec (2010) has already
addresed this question for the scenario “Fix”, showing that it is not possible unless the survival
function depends on ¯̀

h in one crucial and arguably implausible way. For the case “S+W”, as we
have just shown above, however, that is possible at the level of the labor force, if the survival law
satisfies the “perpetual youth” property. Furthermore, if one disregards on-the-job training (by
assuming µ = 0), then this result also follows in the “S+W+R” scenario and under a wide range
of survival laws. In that case, however, all individuals in the labor force share exactly the same
human capital level h0e

λS , and it is precisely this homogeneity that drives the result.
It turns out that if µ > 0, so there is some heterogeneity in human capital across working

cohorts, then the “macro-Mincer” result can be reproduced under the “S+W” scenario only in the
“perpetual youth” case. The following proposition holds.

Proposition 4 (Necessary conditions for “macro-Mincer”) Let Assumptions 1–3 hold, and as-
sume that the “macro-Mincer” equation holds for the labor force, with µ ∈ (0, b). Then, if the
individuals stay at school until the age S and then they work full-time until death, the survival law
must be m(τ) = e−dτ , i.e., it must satisfy the “perpetual youth” property. The implied Mincerian
exponent is equal to the individual rate of return to education λ.

Proof. Upon aggregation, we have:

hLF (t) =

∫ ∞
S

h(t− τ, τ)
P (t, τ)

L(t)
dτ = h0e

(λ−µ)S

∫∞
S
be(µ−(b−d))τm(τ)dτ∫∞

S
be−(b−d)τm(τ)dτ

. (14)

We shall use the notation:

ϕ(S) =

∫∞
S
be(µ−(b−d))τm(τ)dτ∫∞

S
be−(b−d)τm(τ)dτ

(15)

which implies hLF (t) = ϕ(S) · h0e
(λ−µ)S . Since all τ ≥ S in the considered integrals, it is easily

verified that for all S ≥ 0, ϕ(S)
eµS

> 1. Furthermore, applying the l’Hôpital’s rule twice, we obtain:

lim
S→+∞

ϕ(S)

eµS
= lim

S→+∞

∫∞
S
e(µ−(b−d))τm(τ)dτ

eµS
∫∞
S
e(−(b−d))τm(τ)dτ

= (16)

=
1

1− µ
∫∞
S e−(b−d)τm(τ)dτ

m(S)e−(b−d)S

=
1

1 + µ
m′(S)
m(S)

−(b−d)

.

Equation (16) will be useful later.
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The current proposition refers to the functional specifications ofm(τ) for which ϕ(S) = GeHS

for some G > 0 and H ∈ R. Before we address this issue directly, let us formulate its important
corollary. Namely, assuming this functional relationship, it is found that

lim
S→+∞

ϕ(S)

eµS
= lim

S→+∞
Ge(H−µ)S. (17)

Since ϕ(S)
eµS

> 1 for all S ≥ 0, then it must be the case H ≥ µ. Furthermore, one must set G > 1 so
that ϕ(0) > 1. The cases H > µ and H = µ should be addressed separately.

Consider first the case H > µ. In such case we obtain limS→+∞Ge
(H−µ)S = +∞. Coupled

with equation (16), this implies:

lim
S→+∞

m′(S)

m(S)
= b− d− µ. (18)

We shall now pass to the central part of the proof. Positing ϕ(S) = GeHS and rearranging
yields: ∫ ∞

S

be(µ−(b−d))τm(τ)dτ = GeHS
∫ ∞
S

be−(b−d)τm(τ)dτ . (19)

Equation (19) is a functional identity and thus it holds for all S ≥ 0. It is also possible to differen-
tiate both sides of (19) with respect to S. Doing this twice and rearranging terms, we obtain:

m′(S)

m(S)
=

(µ−H − b+ d)e(µ−H)S −G(d− b+H)

G− e(µ−H)S
. (20)

Coupling (18) with (20) and using the assumption H > µ, we obtain:

lim
S→+∞

m′(S)

m(S)
= b− d−H = b− d− µ, (21)

and thusH = µ, a contradiction. The caseH > µ is thus ruled out. The only remaining possibility
is H = µ.

Let us consider this remaining possibility. Inserting the condition H = µ into (20) and simpli-
fying we obtain:

m′(S)

m(S)
= −(G− 1)(−b+ d) +Gµ

G− 1
= (b− d)− Gµ

G− 1
. (22)

Solving this differential equation for m(S) and using the border condition m(0) = 1, we obtain
the only survival law m(τ) consistent with the “macro-Mincer” formulation:

m(S) = exp

((
(b− d)− Gµ

G− 1

)
S

)
, ∀ (S ≥ 0). (23)

Please note that this survival law is exponential and thus has the “perpetual youth” property. Let
us now make the parametrization of m(τ) in equation (23) consistent with its interpretation, i.e.
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ensure that the implied death rate is indeed equal to d. Under a stationary age structure, this is
achieved by checking the following demographic identity:

N(t) =

∫ t

−∞
bN(s)m(t− s)ds = N0e

(b−d)t. (24)

From (23) and (24) it follows that∫ t

−∞
b exp

((
G

1−G

)
µ(t− s)

)
ds = 1. (25)

Computing the last integral reveals that G = b
b−µ . Plugging this into (23), we obtain m(τ) = e−dτ .

Also, ϕ(S) = b
b−µe

µS and thus hLF (t) = bh0
b−µe

λS so that the “macro-Mincer” equation holds with
the Mincerian exponent λ. �

3 Concluding remarks
To be written.

References
[1] Blanchard, Olivier (1985) Debt, deficits, and finite horizons. Journal of Political Economy

93, 223-247.

[2] Bloom, David E., David Canning, and Jaypee Sevilla (2004) The effect of health on economic
growth: A production function approach. World Development 32 (1), 1-13.

[3] Boucekkine, Raouf, David de la Croix, and Omar Licandro (2002) Vintage human capital,
demographic trends and endogenous growth. Journal of Economic Theory 104, 340-375.

[4] Caselli, Francesco, Wilbur J. Coleman (2006) The world technology frontier. American Eco-
nomic Review 96 (3), 499-522.

[5] Groth, Christian, Karl-Josef Koch, Thomas M. Steger (2010) When economic growth is less
than exponential. Economic Theory 44(2), 213-242.

[6] Growiec, Jakub (2010) Human capital, aggregation, and growth. Macroeconomic Dynamics
14 (2), 189-211.

[7] Jones, Benjamin F. (2011a) The human capital stock: a generalized approach. NBER Work-
ing Paper 17487.

[8] Jones, Benjamin F. (2011b) The knowledge trap: human capital and development reconsid-
ered. Mimeo, Northwestern University.

[9] Krueger, Alan B. and Mikael Lindahl (2001) Education for growth. Why and for whom?
Journal of Economic Literature 39 (4), 1101-1136.

10



[10] Mincer, Jacob (1974) Schooling, Experience, and Earnings. New York: Columbia University
Press.

[11] Pandey, Manish (2008) Human capital aggregation and relative wages across countries. Jour-
nal of Macroeconomics 30 (4), 1587-1601.

11


