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Abstract

This paper introduces a new method to identify structural vector autoregres-

sions. The method combines the sign restrictions method with the identification

through heteroskedasticity. I show that different volatility regimes of structural

shocks can be used to strengthen the partial identification through sign restric-

tions. The method is applied to the identification of the monetary policy shocks.

The standard sign restriction method is inconclusive about the sign of the response

of output following a monetary policy shock. On the other hand, using the pro-

posed method, the identified monetary policy shock lowers output significantly as

predicted by theory.
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1 Introduction

The identification of Structural Vector Autoregression models (SVAR) is still a central

topic in macroeconomics. The identification still has to rely on subjective researches’

assumptions. Therefore, SVAR model is considered empirically relevant only when the

identification assumptions are seen as plausible by research community.

Faust (1998), Canova and Nicoló (2002) and Uhlig (2005) were first to identify SVAR

models with uncontroversial sign restrictions that are based on robust predictions from

theory and agreed upon by a majority of researchers. The uncontroversial nature of sign

restriction has its price - sign restrictions only partially identify the model and the set

of models consistent with sign restrictions is normally large. The large set of accepted

models can result in a weakly identified SVAR model that offers mostly inconclusive

predictions. An alternative approach was proposed by Rigobon (2003) who showed that

the heteroskedasticity in the data can be used to identify the model. The identification

is statistical and researcher does not need to impose any subjective assumptions. Nev-

ertheless, the identification only works under the assumption that the variance of the

structural shocks is varying in different regimes, but the structure of economy is fixed in

time, which is seen as unrealistic by a large part of research community.

In this paper, I combine the sign restrictions methodology with the idea that het-

eroskedasticity is present in the data. The presence of heteroskedasticity helps to strengthen

the identification through sign restrictions. The heteroskedasticity provides additional

constraints on the structural parameters if we assume that the sign of the responses to the

structural shocks is the same in different regimes. Therefore, the maintained assumption

is much weaker than in case of purely statistical identification through heteroskedasticity,

as we only have to assume that the sign of the responses to the structural shocks is the

same in different regimes and not that the structure of the economy is fixed as assumed

in Rigobon (2003).

The methodology is applied to study the response of output to a monetary policy

shock. Similar to Uhlig (2005), I find that monetary policy shocks have an ambiguous

effect on real GDP when using agnostic sign restrictions on prices and interest rate.

However, I show that the identification can be considerably strengthen by using the

methodology proposed in this paper. The methodology relies on two assumptions. First,

the volatility of monetary shocks is assumed to vary over time. Second, it is assumed

that the sign of the output response to a monetary policy shock is not changing over

time. This additional agnostic assumptions lead to a more precisely identified model
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which predicts that output decreases significantly after the monetary shock as predicted

by theory.

The rest of this paper is organized as follows. Section 2 presents the identification

methodology. In section 3 the identification methodology is applied to simulated data.

In section 4 the methodology is used to study the response of output to the monetary

shock. Section 5 concludes.

2 Econometric methodology

A Structural Vector Auto-Regressive model (SVAR) can be written as:

yt = A−1
0 A1yt−1 + A−1

0 A2yt−1 + ...+ A−1
0 AKyt−K + A−1

0 Bεt, (2.1)

where yt is the N × 1 vector of endogenous variables, K is a finite number of lags,

and the structural shocks εt are assumed to be white noise, N (0, IN). A0 describes the

contemporaneous relations between the variables, while matrices Ak, k ∈ [1, 2, . . . , K]

describe the dynamic relationships. The diagonal matrix B contains the standard errors

of the structural shocks.

The system (2.1) implies a following structural moving average representation, yt =

B(L)εt, where B(L) is a polynomial in the lag operator. The system in (2.1) cannot be

estimated directly, but needs to be estimated in its reduced form:

yt = A∗1yt−1 + A∗2yt−2 + ...+ A∗Pyt−K + ut, (2.2)

where ut = A−1
0 Bεt and A∗k = A−1

0 Ak.

The moving average representation of (2.2) is yt = C(L)ut. Therefore, the reduced

form response function, C(L), is related to the structural impulse response function

by B(L) = A0C(L). In other words, to identify the structural shocks and obtain the

structural impulse responses, A0 ought to be identified.

Given S = A−1
0 B, A0 is such that Σu = SS ′, where Σu is the variance-covariance

matrix of the reduced form errors. The decomposition Σu = SS ′ is not unique. For

any H such that HH ′ = I, the matrix SH also satisfies this condition. In this case,

SH(SH)′ = SHH ′S ′ = SS ′ = Σu. Therefore, starting from any arbitrary S̃, such that

Σu = S̃S̃ ′ (i.e. a Cholesky decomposition of Σu), alternative decompositions can be found

by post-multiplying by any H. The entire set of permissible impact matrices is infinite

3



and the impact matrix cannot be identified uniquely from data.

2.1 2× 2 example

The proposed identification methodology is best described by a simple 2× 2 example.

Contemporaneous effects

A−1
0 =

[
1 b

c 1

] Dynamic effects

Ah =

[
αh

1,1 αh
1,2

αh
2,1 αh

2,2

] Size of shocks

B =

[
σ1 0

0 σ2

]

Impact matrix

A−1
0 B =

[
σ1 bσ2

cσ1 σ2

] Variance-covariance

Σu =

[
σ2

1 + b2σ2
2 cσ2

1 + bσ2
2

cσ2
1 + bσ2

2 c2σ2
1 + σ2

2

]

The identification problem is that we want to identify impact matrix, A−1
0 B. In other

words, we want to determine the values of four parameters, b, c, σ1, σ2. The values of

parameters can be inferred from the estimated variance-covariance matrix of reduced

form shocks, Σ̂u:

Var-Cov theory

Σu =

[
σ2

1 + b2σ2
2 cσ2

1 + bσ2
2

cσ2
1 + bσ2

2 c2σ2
1 + σ2

2

] Var-Cov data

Σ̂u =

[
Σ̂11 Σ̂12

Σ̂21 Σ̂22

]

The variance-covariance matrix is symmetrical, implying we have only 3 equations for

4 parameters:

σ2
1 + b2σ2

2 = Σ̂11 b, c, σ1, σ2

cσ2
1 + bσ2

2 = Σ̂21 4 unknowns

c2σ2
1 + σ2

2 = Σ̂22 3 equations

and therefore the system is system is not identified. A standard approach to identification

is to assume a so-called exclusion restriction - in our example we would assume that b

or c are zero. Then we could use three equations to determine the values of three free

parameters. Alternatively, we can use heteroskedasicity of shocks to identify the model

or only partial identify the parameters by using sign restrictions, for example.

To see how we can identify the model through heteroskedasticity, assume that we have

two volatility regimes with Σ 6= Σ∗. In this case we have six equations for six parameters:
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σ2
1 + b2σ2

2 = Σ̂11 σ∗21 + b2σ∗22 = Σ̂∗11 b, c, σ1, σ2, σ
∗
1, σ

∗
2

cσ2
1 + bσ2

2 = Σ̂21 cσ∗21 + bσ∗22 = Σ̂∗21 6 unknowns

c2σ2
1 + σ2

2 = Σ̂22 c2σ∗21 + σ∗22 = Σ̂∗22 6 equations

The system is now exactly identified - using six equations we can exactly determine the

values of six parameters. This simple example shows how we can identify why assuming

heteroskedasticity.

The main advantage of identification through heteroskedasticity is that it is based on

data and therefore does not demand subjective constraints on parameters. However, no-

tice that in order to achieve identification through heteroskedasticity you have to assume

that the contemporanous effects, b, c, do not change between the regimes. Namely, if we

allow b, c 6= b∗, c∗, we still have 6 equations, but now 8 parameters, so again the system is

not identified. The assumption that the structure of the economy does not change is an

extremely strong assumption. For example, under this assumption the monetary policy

in the US did not change in 80s.

The second alternative is to use set restrictions on the values of parameters and

identify a set of models that is consistent with the data and those restrictions. This partial

identification method became the most popular identification method, as restrictions are

mostly uncontroversial sign restrictions that are based on robust predictions from theory.

The method is best understood as a set of solutions of equations under parameter

constraint. In order to facilitate the presentation, assume σ1 = 1 and σ2 = 1 in our 2× 2

example. This allows us to discard two equations of the system, which reduces to one

equation, c+ b = Σ̂21, and two unknowns, b and c.

Figure 1: Solutions of equations under sign restriction

b

c

1−1

1

−1

b+ c = 1

For Σ̂21 = 1, black line shows all possible solutions of b and c. Shaded area represents

sign restrictions, b, c > 0. Bold black line shows all b, c consistent with the data and the

prior beliefs. The sign restrictions method can give conclusive predictions only when the
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Figure 2: All solutions consistent with the data in system (2.3)

set of models that is consistent with the data and the restrictions (bold black line in our

graph) is small. Unfortunately, in practice only using uncontroversial sign restrictions

frequently results in inconclusive predictions as the set of models consistent with those

restrictions is large.

2.2 Sign restrictions and heteroskedasticity

In this subsection I show how the heteroskedasticity of shocks can be used to strengthen

the agnostic sign restrictions. Continuing with our example, assume two regimes, Σ = 1

and Σ∗ = 5. We assume the sign restriction on parameter b and b∗. We have two systems:

b+ c = 1 b∗ + c∗ = 5

b > 0 b∗ > 0
(2.3)

The yellow plane in Figure 2 shows all solutions that is consistent with the data - all

solutions of b+ c = 1 and b∗ + c∗ = 5 for b, b∗, c and c∗. The vertical axis shows the ratio

c/c∗ in order to present solutions on the 3-d graph.

Figure 3 further adds the sign restrictions,b > 0 and b∗ > 0. The green plane present

the solutions to the system in (2.3). We can notice that the imposition of the sign

restrictions considerably reduces the space of models.

Finally, we can use the fact that those two system are somehow related. In an extreme

case we could assume that the systems represent two equal economies, except for the

difference in the variance of the structural shocks, b = b∗ and c = c∗. Under this

assumption, we would obtain a unique values of parameters - exact identification - as
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Figure 3: All solutions consistent with the data and sign restrictions in system (2.3)

Figure 4: All solutions consistent with the data, sign restrictions and in system (2.3)

shown in subsection 2.1. However, as discussed above this assumption is strong and hard

to defend.

The novelty of this paper is to propose a less stringent assumption. Instead of as-

suming that parameters are exactly equal in the two regimes, we can assume that the

parameters share the same sign in the two regimes. For example, instead of assuming

that monetary policy did not change from 70s to 80s, we can assume that the sign of the

response of output to a monetary policy shock was the same before and after 80s. The

advantage is that we do not have to assume whether response was positive or negative,

only that the sign of the response was the same over the two regimes.

The blue plane in Figure 4 presents the solutions to the system in (2.3) when we

impose such restriction - we assume that c and c∗ have equal sign in the two regimes.
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We can notice that the blue plane is covers smaller space compared to the green plane

that presents the solutions when only sign restrictions are imposed. This graphically

shows that using heteroskedasticity and imposing “sign” restriction over the two regimes

reduces the set of models consistent with the data and prior constraints. As is shown in

the empirical section below, this approach can considerably strengthen the identification

with sign restrictions.

2.3 Estimation algorithm

The estimation procedure consists of three steps. In the first step, the reduced form VAR

model is estimated on each subsample. In the second step, the subsample estimates are

concatenated in one system. The QR method proposed by Rubio-Ramirez et al. (2010)

is then used to rotate the concatenated system to obtain the models that are consistent

with the data and the sign restrictions. In the third step, estimation uncertainty is taken

into account. Formally, the steps are:

1. Estimate reduced-form VAR: Given a data sample m and a chosen number

of lags, K̂, a V AR(K̂) is estimated by Ordinary Least Squares (OLS) to obtain

an estimate of autoregressive coefficients Â∗m(L), the corresponding reduced form

impulse response function, Ĉm(L) and of the variance-covariance of reduced form

errors, Σ̂m, for each subsample m.

2. Identification: The first step is to construct the concatenated large system from

the subsample estimates:

Σ̂ =


Σ̂1 0 · · · 0

0 Σ̂2 · · · 0
...

...
. . .

...

0 0 · · · Σ̂M

 Ĉ(L) =


Ĉ1(L) 0 · · · 0

0 Ĉ2(L) · · · 0
...

...
. . .

...

0 0 · · · ĈM(L)

 (2.4)

C(L), is related to the structural impulse response function via B(L) = A0C(L)

and reduced form errors from subsample m, um,t, are related to structural shocks

as um,t = A−1
0,mBmεm,t. We can construct the system-wide impact matrix:
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S =


A−1

0,1B1 0 · · · 0

0 A−1
0,2B2 · · · 0

...
...

. . .
...

0 0 · · · A−1
0,MBM

 (2.5)

and the system wide impact matrix must satisfy: Σ = SS′.

(a) The initial estimate of Ŝ is obtained by a Cholesky decomposition of the system

wide variance-covariance matrix of reduced form errors, ˆ̃S = chol(Σ̂), giving

an initial estimate of the impulse response function is
̂̃
B(L) = Ĉ(L)

̂̃
S.

(b) A nM × nM matrix P is drawn from standard normal distribution, N (0, 1)

and the QR decomposition of P is derived. Note that P = QR and QQ′ = I.

(c) The initial estimate of the impulse response function is post-multiplied by Q,

to obtain a candidate impulse response function B̂(L) = Ĉ(L)
̂̃
SQ, where:

B̂(L) =


B̂1(L) 0 · · · 0

0 B̂2(L) · · · 0
...

...
. . .

...

0 0 · · · B̂M(L)

 (2.6)

and B̂m(L) is the candidate impulse response function in a subsample m.

(d) The steps 2b-2c are repeated until the candidate impulse responses, B̂(L), sat-

isfy the identifying restrictions within each sample and identifying restrictions

between each sample.

3. Estimation uncertainty: to account for estimation uncertainty, we repeat 1000

times steps 1-2 , each time with a new artificially constructed data, Y ∗m. To construct

bootstrapped data, I use re-sampling of errors for each subsample separately. The

new bootstrapped data sub-sample is constructed recursively as y∗m,t = Â∗m,1y
∗
m,t−1+

... + Âm,Ny
∗
m,t−N + û∗m,t, starting from initial values [ym,0, ..., ym,N−1]. Â∗m,n are the

estimated reduced form autoregressive coefficients and û∗m,t are drawn randomly,

with replacement, from the estimated reduced form errors, ûm,t.

The point estimates and confidence bands are given by the median and relevant per-

centiles of the distribution of retained impulse response functions over each subsample.
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3 Simulation example

In this section I show how the proposed identification method works on the simulated

data. For illustrative purposes, assume the following parameterization of (2.1):

Dynamic effects

A1 =

 0.4 0.2 0.3

0.2 0.4 0.2

0.2 0.2 0.4


Contemporaneous effects

A−1
0 =

 0.3 −0.3 0.3

0.2 0.2 −0.2

0.3 −0.3 −0.3


Size of shocks

B =

 1 0 0

0 1 0

0 0 1


Dynamic effects

A∗1 =

 0.4 0.2 0.3

0.2 0.4 0.2

0.2 0.2 0.4


Contemporaneous effects

A∗−1
0 =

 0.3 −0.3 0.3

0.6 0.7 −0.1

0.3 −0.3 −0.3


Size of shocks

B∗ =

 5 0 0

0 1 0

0 0 1


where ∗ stands for the parameterization in the second regime. The assumption is that the

volatility of the first shocks changes between the regimes (heteroskedasticity). Contrary

to a standard approach, where it is assumed that both A1 and A−1
0 are fixed in different

regimes, here it is assumed that contemporaneous effects, A−1
0 , differ in different regimes.

The dynamic effects, A1, are kept fixed just for convenience.

To identify the shocks the following sign restrictions are imposed on impact:

Table 1: Sign restrictions

shock 1 shock 2 shock 3

variable 1 + - +
variable 2 + + -
variable 3 (+) (-) -

As explained above, we can use the heteroskedasticity of shocks to strengthen identi-

fication when we do not want to impose a specific sign restriction. Instead we can assume

that the direction of the response of variable is unknown, but its sign does not change

between the regimes. For example, in empirical section below I assume that the response

of output to the monetary policy shock is unknown, but the sign of its response is the

same over the whole sample.

In the present illustrative example we can, for example, drop sign restrictions in the

brackets in Table 1 and only assume that the direction of responses is the same in the two

assumed regimes. Figure 5 illustrates how much we gain from using heteroskedasticity
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Figure 5: The IRFs from illustrative example

Standard identification
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Figure 6: Standard identification + heteroskedasticity
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The figure shows the IRFs to the first shock in the first sample from the illustrative example. The median blue line
represents the median of the distribution of the retained IRFs that are consistent with the imposed restrictions. The red
dotted line represents the 2.5th and 97.5th percentile of the distrubution of retained IRFs. The IRFs are normalized by
the standard deviation. The black dotted lines with circles represent true IRFs.

when identifying structural shocks.1 The first panel shows IRFs when we use a standard

approach and we identify the three shocks using the sign restrictions from Table 1.

We can notice that imposing an additional cross-regime restriction that the sign of

the response for the third variable is the same across the two regimes for the first and

second shock strengthens the identification. The response of the third variable to the

first shock is insignificant when only using standard sign restrictions, while adding cross-

regime restrictions the response is more precisely estimated. The estimates now confirm

that the third variable increases after the first shock as implied by the simulation model.

1In simulations the reduced form VAR coefficients are imposed and not estimated. This implies that
uncertainty is related only to identification uncertainty and not parameter uncertainty.
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Figure 7: The IRFs under a standard identification - one regime
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The figure shows the IRFs to the monetary shock. The median blue line represents the median of the distribution of the
retained IRFs that are consistent with the imposed restrictions. The red dotted line represents the 16th and 84th percentile
of the distrubution of retained IRFs. The IRFs are normalized by the standard deviation, so that the identified monetary
shock leads to a 100 basis points increase in the federal funds rate.

4 Monetary shocks

In this section I study the response of output following a monetary shock by applying

the proposed identification method.

4.1 Data and the reduced-form model

The baseline dataset includes only three variables from the dataset used in Uhlig (2005)

who in turn follow Bernanke and Mihov (1998). The baseline contains monthly inter-

polated series of real GDP, the GDP deflator and the federal funds rate for the U.S.. I

use the same sample as used by Uhlig (2005) running from January 1965 until December

2003. The regime specific VARs are estimated in log-levels, except for the federal funds

rate, with a constant and two lags.

4.2 Results

I first start with a standard approach taken in the literature. The VAR is estimated on

the whole sample. The monetary shock is identified by assuming that federal funds rate

increases and GDP deflator decreases following the monetary shock, while the response

of the GDP is unrestricted.2

Figure 7 present the results of this standard approach. Similar to what is find by Uhlig

(2005), I find that the response of output is insignificant and if anything, the median IRF

even suggest that output increases after the monetary shock. The output significantly

decreases only after two years following the monetary shocks.

2Following Uhlig (2005), responses are restricted for 6 months.
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Figure 7 presents the results when we identify the monetary policy shock using the

methodology proposed in this paper. Specifically, I assume two regimes that are sepa-

rately estimated over two subsamples that are obtain by spliting the whole sample on

half. The first subsample contains data from January 1965 until December 1981 and the

second sample contains data from January 1982 until December 2003. Further, as in the

baseline exercise, I do not restrict the response of output, but I assume that the sign of

the response of output has the sa,e sign in both regimes.

Figure 8: The IRFs: sign restrictions + heteroskedasicity - two regimes, first regime

Two regimes, first regime
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Two regimes, second regime
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The figure shows the IRFs to the monetary shock. The median blue line represents the median of the distribution of the
retained IRFs that are consistent with the imposed restrictions. The red dotted line represents the 16th and 84th percentile
of the distrubution of retained IRFs. The IRFs are normalized by the standard deviation, so that the identified monetary
shock leads to a 100 basis points increase in the federal funds rate.

The upper panel in Figure 7 shows responses in the first subsample, the middle panel
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shows the responses in the second subsample and the last panel shows the average re-

sponse over the whole sample (mean of subsample responses). The additional restrictions

considerably improve identification, as output significantly lowers after the monetary

shock in both subsamples and on average.

5 Conclusion

This paper introduced a new method to identify the SVAR models. The method combines

the partial identification methodology with the identification through heteroskedasticity.

On the one hand, this method allows to relax a stringent assumption that the structure

of SVAR model is fixed in different regimes that is needed when identifying SVAR purely

through heteroskedasticity. On the other hand, the imposition of additional constraints

strengthens the partial identification, providing more precise estimates.

The advantage of this method over a standard sign restrictions was used to study the

effects of monetary policy shocks on output. The
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