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Abstract 

This paper develops a climate-economy model with uncertainty, irreversibility and active learning. 

Whereas previous papers assume passive learning from one observation per period, or experiment with 

control variables to gain additional information, this paper considers active learning from research 
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investment in improved observations. We restrict ourselves to improving observations of the global mean 

temperature. We find that the decision maker invests a significant amount of money in climate research, 

far more than the current level, in order to increase the rate of learning about climate change. This helps 

the decision maker take improved decisions. The level of uncertainty decreases more rapidly in the active 

learning model with research investment than in the passive learning model only with temperature 

observations. As a result, active learning reduces the optimal carbon tax. The greater the risk, the larger is 

the effect of learning. The method proposed here is applicable to any dynamic control problem where the 

quality of monitoring is a choice variable. 
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1 Introduction 

It has long been known that the prospect of future affects current decisions, and in some cases it is 

optimal to experiment with policy so as to acquire information. In this paper, we consider investment in 

improved monitoring as an alternative route to improve information, and investigate the implications for 

climate policy. 

There is considerable uncertainty about every aspect of climate change and climate policy. As the 

consequences of emission abatement decisions are irreversible or at least long-lived, the prospect of 

future learning materially affects optimal climate policy in the short-run. The previous literature assumes 

that new knowledge either arrives exogenously or arrives without cost in the form of new observations 

about the climate system. However, learning requires investment and can be decelerated or accelerated by 

monitoring and research. We here explore simultaneous decisions about learning and abatement. 

Manne and Richels (1992), Peck and Teisberg (1993), Kolstad (1996a, b), Nordhaus and Popp (1997), 

Ulph and Ulph (1997), Gollier et al. (2000), and Webster (2002) incorporate exogenous learning in 

analyses of climate policy. In these studies, information arrives exogenously at some points in time, and 

thus learning is independent of the actions of the decision maker. Kelly and Kolstad (1999), Leach (2007), 

Webster et al. (2008), Jensen and Traeger (2013), Kelly and Tan (2013), Hwang et al. (2014), Lemoine 

and Traeger (2014) endogenize learning. 1 Uncertainty becomes smaller as the decision maker observes 

the system. As the state of the system, and thus the information it contains, depends on past decisions, the 

planner controls, to a certain extent, what is learned. However, in these models, learning is passive in that 

it is a by-product of decisions on the carbon tax. In a cartoon representation, there are two state variables 

(the atmospheric concentration of carbon dioxide, and the stock of knowledge) but only one control 

                                                           
1 Karp and Zhang (2006) consider learning about damage costs in their theoretical paper.  
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variable (the carbon tax). Decisions are therefore suboptimal (Tinbergen, 1954). Here, we introduce a 

second control variable (i.e. research investment) in order to control learning and emissions separately. 

In a seminal paper, Prescott (1972) shows that there is a tradeoff between control and information when 

there is uncertainty about the effect of a policy instrument. He finds it is optimal to sacrifice part of the 

current benefits of control in order to obtain information that improves future decisions – we refer to this 

as experimentation. Especially when uncertainty is large or when time horizon is long, experimentation 

becomes more important (MacRae, 1972; Bar-Shalom and Tse, 1976; Grossman et al., 1977; Wieland, 

2000a; Beck and Wieland, 2002). 2  

The current paper follows the standard Bayesian approach.3 In the early literature (e.g., Kendrick, 1972; 

Grossman et al., 1977), the decision maker has a prior belief on an uncertain parameter and she updates 

her belief using Bayes’ Rule – we refer to this as passive learning. Later developments include multiple 

uncertainties (e.g., Wieland, 2000a), other dynamics than passive learning (e.g., Bertocchi and Spagat, 

1998), time-varying parameters (e.g., Beck and Wieland, 2002), alternative utility functions (e.g., Johnson, 

2007), and correlated information (e.g., Marcoul and Weninger, 2008). The model is typically solved 

using dynamic programming techniques with a grid search (e.g., Wieland, 2000a; Bond and Loomis, 

2009).  

The current paper differs from the literature. First and foremost, one of the control variables (i.e. 

research investment) is used exclusively to increase the speed of learning (i.e. the precision of climate 

                                                           
2  In the literature, experimentation has been mainly investigated for monetary policy (e.g., Kendrick, 1982; 

Bertocchi and Spagat, 1993; Wieland 2000b; Beck and Wieland, 2002; Yetman, 2003). The other applications 

include a firm or consumer behavior (e.g., Grossman et al., 1977; Mirman et al., 1993), economic growth (e.g., 

Bertocchi and Spagat, 1998; Johnson, 2007), public election (e.g., Strulovici, 2010), job choice (e.g., Antonovics 

and Golan, 2012), and natural resource management (e.g., Marcoul and Weninger, 2008; Bond and Loomis, 2009). 

For asymptotic properties, see Taylor (1974), Easley and Kiefer (1988), and Agihon et al. (1991).  

3 For the non-Bayesian approach including dual control, see Bar-Shalom and Tse (1976), Kendrick (1982; 2005).  
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sensitivity estimation) – we refer to this as active learning. In previous papers, learning is a by-product of 

control (passive learning) or control is a by-product of learning (experimentation). Because learning is a 

control variable, we have to take the cost of learning into account, whereas most papers have costless 

learning. In an active learning model with research investment, gains from learning consist of improved 

decisions, whereas the costs of learning are the investment in observations and research. Balancing the 

gains and losses, the rate of learning is determined, together with the optimal carbon tax.  

Existing papers on the decision making under uncertainty and learning about climate change assume 

that knowledge grows by one observation per year with constant precision (or observational errors) (e.g., 

Kelly and Kolstad, 1999; Leach, 2007; Webster et al., 2008; Kelly and Tan, 2013; Hwang et al., 2014). 

Instead, this paper considers additional learning through improved observations. Research investment in 

the global climate observational system increases the precision of temperature observations, lowering 

estimation errors for the equilibrium climate sensitivity. 

The implementation of active learning in a climate economy model is worthwhile since decision 

makers make explicit efforts to gather information on uncertain variables. For instance, WMO and UNEP 

(2010) estimate that global annual expenditures on climate observations are about $4~6 billion. As a 

result, temperature observational errors have been substantially decreased (Kennedy et al. 2011). 

Likewise, decision makers make explicit efforts to promote research activities to learn about climate 

processes. The rate of learning depends on such efforts. 

In order to solve our large model, we apply the simulation-based approximation method instead of a 

grid search. The model and computational methods of this paper are similar to those of Hwang et al. 

(2014), who in turn draw on Marliar and Marliar (2005) and Judd et al. (2011), except that research 

investment is introduced. This paper follows the tradition of Bayesian statistical decision theory which 
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requires that uncertainty or partial ignorance can be represented as a probability distribution (DeGroot, 

1970).       

This paper proceeds as follows. Section 2 briefly describes the model. Section 3 illustrates the way of 

additional learning and our calibrations. Section 4 shows computational methods. Section 5 presents the 

main results of this paper and sensitivity analyses are given in Section 6. Section 7 provides conclusions.  

2 A climate-economy model 

2.1 Economy 

The decision maker in our model chooses the rate of emissions control and research investment for each 

time period so as to maximize social welfare defined as in Equation (1). Gross output, net of damage costs 

and abatement costs, is allocated to consumption, research investment, and gross investment other than 

climate research. Reducing the computational burden, the savings rate is assumed to be exogenous. This 

assumption does not materially affect the results, since the savings rate does not change much for 

plausible model specifications. 

max
𝜇𝑡,𝑅𝑡

𝔼 ∑ 𝐿𝑡𝛽𝑡𝑈(𝐶𝑡 , 𝐿𝑡)

∞

𝑡=0

 (1) 

𝐶𝑡 = (1 − 𝜃1µ𝑡
𝜃2)𝛺𝑡𝑄𝑡 − 𝐼𝑡 − 𝑅𝑡  (2) 

 

where 𝔼 is the expectation operator, 𝑈 is the utility function, 𝐶 is consumption, 𝐿 is population, µ is the 

rate of emissions control, 𝐼 is gross investment (other than climate research), 𝛺 is the damage function, 𝑄 
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is gross output, 𝑅 is investment in climate research, 𝛽 is the discount factor, 𝜃1 and 𝜃2 are parameters. 

See Appendix A for the full model and the parameter values.4 

The research capital stock accumulates as follows: 

𝐾𝑅,𝑡+1 = (1 − 𝛿𝑅)𝐾𝑅,𝑡 + 𝑅𝑡 (3) 

 

where 𝐾𝑅 is the research capital stock, 𝛿𝑅 is the depreciation rate of research investment. For simplicity 

the research capital stock is assumed not to depreciate over time (𝛿𝑅=0).5  

2.2 Temperature response model 

Integrated assessment models usually use some energy balance models for temperature (Marten, 2011), 

which includes radiative forcing of the atmosphere and heat exchange between atmosphere and ocean 

through upwelling and diffusion (Baker and Roe, 2009).  

If we assume that there are two boxes for temperature (the mixed layer and the deep ocean), the 

temperature response model becomes:6  

                                                           
4 Unlike DICE, the time step is annual with infinite time horizon in our model. In order to consider the effect of 

uncertainty more properly, we let the lower bound of consumption as low as possible and remove the upper bound 

of temperature increases. In addition, backstop technology is not considered in the model.  

5 This assumption does not affect the main results of this paper. For instance, even if the ordinary depreciation rate 

of the capital stock, namely 0.1 per year, is applied to the model, there is no significant difference in the results, 

except that research investment stabilizes at a certain low level (not zero) so as to compensate for the amount of 

depreciated research capital stock (results not shown). 

6  See Marten (2011) and Hwang et al. (2015) for more discussion on temperature response model and its 

implications.  
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𝑇𝐴𝑇𝑡+1
= 𝑇𝐴𝑇𝑡

+𝜉1{𝑅𝐹𝑡+1 − (𝜂 𝜆⁄ )𝑇𝐴𝑇𝑡
− 𝜉3(𝑇𝐴𝑇𝑡

− 𝑇𝐿𝑂𝑡 )}
 
 (4) 

𝑇𝐿𝑂𝑡+1
= 𝑇𝐿𝑂𝑡 + 𝜉4{𝑇𝐴𝑇𝑡

− 𝑇𝐿𝑂𝑡
}

 
 (5) 

 

where  𝑇𝐴𝑇  and  𝑇𝐿𝑂  are atmospheric and oceanic temperature changes, respectively, from 1900, 𝑅𝐹 =

𝜂 ln (𝑀𝑡/𝑀𝑏) ln (2)⁄ + 𝑅𝐹𝑁,𝑡 is radiative forcing, 𝑅𝐹𝑁,𝑡 is radiative forcing from other than greenhouse gas, 𝜆 

is the equilibrium climate sensitivity, 𝜂, 𝜉1, 𝜉3, and 𝜉4 are parameters.  

The equilibrium climate sensitivity refers to the equilibrium global warming in response to a doubling 

of the atmospheric concentration of carbon dioxide, the major anthropogenic greenhouse gas (°C/2xCO2). 

The probability distribution of the climate sensitivity is derived from the distribution of the total feedback 

factors (Roe and Baker, 2007), using  

𝜆 = 𝜆0 (1 − 𝑓)⁄  (6) 

 

where 𝑓 is the total feedback factors which is assumed to be strictly less than 1, and 𝜆0 is the equilibrium 

climate sensitivity in a black body planet without any feedbacks. 

The total feedback factors denote the aggregate impacts of physical factors such as water vapor, cloud, 

and albedo on radiative forcing in a way to magnifying the response of the climate system (Hansen et al., 

1984). For instance, “[A] positive radiative forcing such as that due to an increase in CO2 tends to 

increase temperatures, which tends to increase water vapor, which, in turn, produces a perturbation in the 

down welling long wave radiation that amplifies the original forcing” (Roe, 2009: 97).  

This framework of feedback analysis is useful in the following reasons: 1) the total feedback factors are 

observable, unlike the climate sensitivity; 2) it is easy to apply Bayes’ Theorem since the total feedback 
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factors are assumed to be normally distributed; 3) the resulting climate sensitivity distribution has fat tails 

(Roe and Baker, 2007). Risk is fat-tailed if the probability density of an uncertain variable falls more 

slowly than exponentially in the tail (Weitzman, 2009). 

Substituting Equation (6) for 𝜆  in Equation (4), rearranging, replacing radiative forcing with its 

components, and introducing temperature shock results in:  

𝑇𝐴𝑇𝑡+1
= (𝜁1𝑓+𝜁2)𝑇𝐴𝑇𝑡

+ 𝜁3ln (𝑀𝐴𝑇𝑡
/𝑀𝑏) + 𝜁4𝑇𝐿𝑂𝑡

+ 𝜁5𝑅𝐹𝑁,𝑡 + 𝜀𝑡+1
  

 (7) 

 

where 𝑅𝐹𝑁 is radiative forcing from non-CO2, 𝑀𝐴𝑇 is the carbon stock in the atmosphere,  𝑀𝑏(=596.4GtC) 

is the pre-industrial carbon stock in the atmosphere, 𝜀 is natural temperature shock (or natural variability) 

(Brohan et al., 2006; Webster et al., 2008), 𝜁1 = 𝜉1𝜂/𝜆0, 𝜁2 = 1 − 𝜁1 − 𝜁4, 𝜁3 = 𝜉1𝜂/ln (2), 𝜁4 = 𝜉1𝜉3, 

and 𝜁5 = 𝜉1 are adjusted parameters.  

Actual temperature increase is governed by Equation (7). Observed temperature increase however is 

also affected by observational errors (e.g., measurement errors and data coverage bias) as follows.  

𝑇𝐴𝑇𝑡
𝑜𝑏𝑠 = 𝑇𝐴𝑇𝑡

+ 𝜀𝑡
𝑜𝑏𝑠  (8) 

 

where 𝜀𝑜𝑏𝑠 denotes observational errors, 𝑇𝐴𝑇𝑡
 is the actual temperature change (Equation 7).  
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3 Improved observations 

3.1 Research investment and observational errors 

The rate of learning about the climate sensitivity is sensitive to temperature shocks (Webster et al., 2008). 

As the standard error in the mean of temperature increases (decreases, respectively), the signal to noise 

ratio falls (grows, respectively), making it more difficult (easier, respectively) to detect the true state of 

the world. The standard error in the mean of temperature falls as the global climate observational system 

improves. For instance, as illustrated in Figure 1, global temperature observational errors, one of the 

components of temperature shocks, have decreased over time as the number of observational instruments 

such as weather stations has increased.7 

In order to build a learning model with research investment, this paper assumes that the variance of 

natural temperature shock is constant over time. This is not unreasonable in that natural temperature 

shock such as natural variability is not controlled by the decision maker and the effect of climate change 

on natural temperature shock can be thought of as negligible at least for hundreds of years. Then the 

standard error in the mean of observed temperature is decomposed into two elements as follows: 

𝜎𝜀,𝑡
2 = 𝜎𝑜𝑏,𝑡

2 + 𝜎𝑛𝑎𝑡𝑢𝑟𝑎𝑙
2  (9) 

 

where 𝜎𝜀, 𝜎𝑜𝑏, and 𝜎𝑛𝑎𝑡𝑢𝑟𝑎𝑙 are the standard error in the mean of observed temperature, observational 

errors, and natural temperature shock, respectively. 

                                                           
7 The quality of observations as well as the number of observations is important for the standard error in the mean of 

temperature. For instance, increasing the number of observational system does not necessarily improve the precision 

of the measurement of climate change if the quality of observations is limited. However for simplicity we refer the 

consideration of the quality of observations to future researches.   
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  Broadly speaking, temperature’s observational errors are linearly related to the reciprocal of the number 

of observational instruments (Jones et al., 1997; Brohan et al., 2006), at least in the relevant domain (see 

Figure 1). Assuming independence between sea surface temperature (SST) observational errors and land 

air temperature (LAT) observational errors, the total observational errors of global mean air temperature 

can be calculated as follows. 

𝜎𝑜𝑏𝑡

2 = ∑ 𝜔𝑗𝜎𝑜𝑏𝑗,𝑡

2

𝑗

= ∑ 𝜔𝑗 (𝛼𝑗 𝑁𝑜𝑗,𝑡
⁄ + 𝛽𝑗)

𝑗

 (10) 

 

where 𝑗 ∈ {𝑙, 𝑠} refers to each observation (𝑙 for LAT and s for SST), 𝜔 is the respective area of the land 

or the sea, 𝑁𝑜 is the number of observational instruments, 𝛼 and 𝛽 are parameters.  

For simplicity, we assume that observational errors approach zero as investment in the global 

temperature observational system increases arbitrarily large (𝛽𝑗=0). Then Equation (9) leads to Equation 

(11), the channel through which research investment affects the uncertainty about temperature shocks:  

𝜎𝜀,𝑡
2 = 𝜔𝑙 𝑐𝑙𝛼𝑙 (𝑝𝐾𝑅𝑡

)⁄ + 𝜔𝑆𝑐𝑠𝛼𝑠 {(1 − 𝑝)𝐾𝑅𝑡
}⁄ + 𝜎𝑛𝑎𝑡𝑢𝑟𝑎𝑙

2 = 𝑎𝑅 𝐾𝑅𝑡
⁄ + 𝜎𝑛𝑎𝑡𝑢𝑟𝑎𝑙

2  (11) 

 

where 𝐾𝑅 is the research capital stock for the global temperature observational system,  0 ≤ 𝑝 ≤ 1 is the 

proportion of money spent on land observations, 𝑐𝑙 ≡ 𝑝𝐾𝑅/𝑁0,𝑙  and 𝑐𝑠 ≡ (1 − 𝑝)𝐾𝑅/𝑁0,𝑠  are the unit 

cost of LAT and SST observation, respectively, and 𝑎𝑅 ≡ 𝜔𝑙 𝑐𝑙𝛼𝑙 𝑝⁄ + 𝜔𝑆𝑐𝑠𝛼𝑠 (1 − 𝑝)⁄ .  

3.2 Bayesian updating 

The decision maker updates her belief on the total feedback factors using Bayes’ Theorem as follows: 
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𝑝(𝑓|𝑇𝐴𝑇
𝑜𝑏𝑠) ∝ 𝑝(𝑇𝐴𝑇

𝑜𝑏𝑠|𝑓) × 𝑝(𝑓) (12) 

 

where 𝑝(𝑓) is the prior distribution, 𝑝(𝑇𝐴𝑇
𝑜𝑏𝑠|𝑓) is the likelihood function, and 𝑝(𝑓|𝑇𝐴𝑇

𝑜𝑏𝑠) is the posterior 

distribution.  

The normal distribution of Roe and Baker (2007) with parameters 𝑓𝑡̅ and 𝑣𝑡 is used as the initial prior 

for the year 2005. Note that the parameters become endogenous state variables. The general techniques 

for Bayesian updating as discussed in DeGroot (1970) and Greenberg (2007) are applied. The resulting 

posterior mean and the posterior variance of the total feedback factors are:  

𝑓𝑡+1
̅̅ ̅̅ ̅ =

𝑓𝑡̅ + 𝜁1𝑇𝐴𝑇𝑡
𝑜𝑏𝑠𝐻𝑡+1 𝑣𝑡 𝑣𝜀,𝑡⁄

1 + (𝜁1𝑇𝐴𝑇𝑡

𝑜𝑏𝑠)
2

𝑣𝑡 𝑣𝜀,𝑡⁄
 (13) 

𝑣𝑡+1 =
𝑣𝑡

1 + (𝜁1𝑇𝐴𝑇𝑡

𝑜𝑏𝑠)
2

𝑣𝑡 𝑣𝜀,𝑡⁄
 (14) 

 

where 𝑓𝑡̅ and 𝑣𝑡 are the mean and the variance of the total feedback factors, 𝑣𝜀,𝑡 = 𝜎𝜀,𝑡
2  is the variance of 

observed temperature shocks, and 𝐻𝑡+1 ≡ 𝑇𝐴𝑇𝑡+1

𝑜𝑏𝑠 − 𝜁2𝑇𝐴𝑇𝑡

𝑜𝑏𝑠 − 𝜁3 ln(𝑀𝑡 𝑀𝑏⁄ ) − 𝜁4𝑇𝐿𝑂𝑡
− 𝜁5𝑅𝐹𝑁,𝑡.  

The posterior distribution with parameters 𝑓𝑡+1
̅̅ ̅̅ ̅ and 𝑣𝑡+1 of Equations (13) and (14) serves as the prior 

for the next time period. In this way the decision maker learns about the true value of the total feedback 

factors for each time period. Note that the parameters of the posterior distribution are affected by research 

investment through Equations (11, 14). The higher is research investment the lower is the variance of the 

total feedback factors.  
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For simulations, the initial values for 𝑓𝑡̅  and 𝑣𝑡  are assumed to be 0.65 and 0.132, respectively, 

following the current scientific knowledge (Roe and Baker, 2007). Since the total feedback factors are 

bounded above, the posterior distribution is derived first with the conjugate normal prior, and then an 

upper bound (𝑓𝑡̅ ≤0.999) is set for simulations. The upper bound corresponds to the climate sensitivity of 

1,200°C/2xCO2, which is far higher than any admitted values. 

3.3 Calibration 

Instead of estimating all the parameters in Equation (11), this paper estimates only 𝑎𝑅 and 𝜎𝑛𝑎𝑡𝑢𝑟𝑎𝑙
2 . To 

this end, first, global expenditures on temperature observations are estimated. Currently, global mean 

LAT is calculated from the records of each country’s weather stations and global mean SST is calculated 

from the reports of observational platforms such as ships, drifting buoys, and moored buoys (Kennedy et 

al., 2011). Thus we multiply the number of observational instruments and the unit cost of each instrument 

(see Table 1). Annual operational costs for temperature observational instruments are estimated to be 

about $450 million in 2005.85F

8 The total installation costs for all the existing instruments are about $500 

million.9 Second, 𝜎𝑛𝑎𝑡𝑢𝑟𝑎𝑙
2  is calculated as the difference between the total variance of temperature shocks 

(=0.102) estimated by Tol and De Vos (1998) and the variance of observational errors (=0.062) obtained 

from the HadCRUT4 dataset (Morice et al., 2012). Then it is not unreasonable to assume that the current 

                                                           
8 For comparison, the United States spent $140 million on in-situ climate observations in 2010 (submission of USA 

to UNFCCC/SBI 35). WMO and UNEP (2010) estimate that annual global expenditures on climate observations are 

about $4~6 billion. Douglas-Westwood (2006) estimate that the total costs of ocean observations are $402 million in 

2005. Their estimates are not directly comparable to this paper, however, because their estimates include all kinds of 

observations besides temperature, such as precipitation, wind, ice, as well as satellite observations.  

9 This number is small compared to the world economy. For instance, the initial value for the global capital stock (in 

2005) is $137 trillion in the original DICE model. Thus the research investment in climate observations has a 

negligible effect on the growth path of the world economy.  
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research capital stock ( 𝐾𝑅0
= $950 million) produces the current variance of temperature shocks 

(𝜎𝜀,0
2 =0.102) through Equation (11). Therefore, 𝑎𝑅=$3.42 million.10  

As shown in Figure 2, our parameterizations imply that the variance of temperature shocks decreases 

(increases) as the research capital stock increases (decreases). If there is no change in the research capital 

stock the variance of observational errors (in turn, the variance of temperature shocks) remains the same.  

Finally, we assume that the decision maker does not make an effort to reduce the variance of 

observational errors if she thinks there has been enough learning.11 More specifically, we set 𝑅𝑡=0 if 

𝜎𝜀,𝑡
2 − 𝜎𝑛𝑎𝑡𝑢𝑟𝑎𝑙

2 < 𝜔𝑐, where 𝜔𝑐 reflects the level of satisfaction of the decision maker about the magnitude 

of learning. Note that 𝜎𝜀,𝑡
2  is always higher than 𝜎𝑛𝑎𝑡𝑢𝑟𝑎𝑙

2  in our model although 𝜎𝜀,𝑡
2  becomes close to 

𝜎𝑛𝑎𝑡𝑢𝑟𝑎𝑙
2  as the research capital stock increases. Put differently, 𝜎𝑛𝑎𝑡𝑢𝑟𝑎𝑙

2  is the lower bound for the 

variance of temperature shocks in the model. From Equations (3) and (11) this assumption serves as an 

upper bound of research investment (𝑅𝑡 ≤ 𝑎𝑅 𝜔𝑐⁄ − (1 − 𝛿𝑅)𝐾𝑅,𝑡). For instance, with 𝜔𝑐=10-5 and the 

above parameterizations (i.e., 𝑎𝑅=$3.42 million, 𝐾𝑅,0=$950 million, 𝛿𝑅=0), the upper bound of the initial 

research investment is about $341 billion. The upper bound is sensitive to the cost estimates (𝑎𝑅), the 

decision maker’s satisfaction about the magnitude of learning (𝜔𝑐), and the level of the research capital 

stock (see Section 6.1).  

                                                           
10 These calibrations assume that operational costs are included in the research capital stock, for simplicity. An 

alternative is to explicitly represent operational costs in the model, but this does not affect the main results of this 

paper (results not shown). 

11 As illustrated below and in Section 6.1, this assumption is useful for setting the upper bound of annual research 

investment. Roughly, we can think of this as a kind of budget constraint.  
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4 Computational methods 

In order to solve the active learning model, the dynamic programming method proposed by Maliar and 

Maliar (2005) is applied. For more details on the solution algorithm see Hwang (2014). The problem is 

reformulated in a recursive way as: 

𝑊(𝒔𝑡 , 𝜽𝑡) = 𝑚𝑎𝑥
𝒄𝒕

[𝑈(𝒔𝑡 , 𝒄𝑡 , 𝜽𝑡) + 𝛽𝔼𝑡𝑊(𝒔𝑡+1, 𝜽𝑡+1)] (15) 

𝑊(𝒔𝑡 , 𝜽𝑡) ≈ ∑ 𝜓(𝒔𝑡 , 𝜽𝑡; 𝒃𝒏)
𝑁

𝑛=1
 (16) 

 

where 𝑊 is the value function starting from period 𝑡, 𝒄 is the vector of control variables (𝜇, 𝑅), 𝒔 is the 

vector of state variables (𝐾, 𝐾𝑅, 𝑀𝐴𝑇, 𝑀𝑈, 𝑀𝐿, 𝑇𝐴𝑇, 𝑇𝐿𝑂, 𝑓,̅ 𝑣, L, A, σ), 𝑀𝑈 and 𝑀𝐿 are the carbon stocks 

in the upper ocean and the lower ocean, respectively, σ is the emissions-output ratio, 𝜽 is the vector of 

uncertain variables (f, 𝜀), 𝜓 is the basis function, and 𝒃 is the vector of coefficients for the basis function. 

The solution algorithm is summarized as follows. First, approximate the value function with a flexible 

basis function. Second, derive the first order conditions for optimal policy rules. Third, choose an initial 

guess on the coefficients 𝒃  of the basis function: 𝒃(0) . Fourth, simulate a time series of variables 

satisfying the first order conditions, transitional equations, and boundary conditions with the initial guess 

𝒃(0)
.. 12 Fifth, calculate the left hand side and the right hand side of the Equation (15) using the simulated 

time series, and then find 𝒃 that minimizes the difference between them: 𝒃̂. 13 Sixth, update the initial 

                                                           
12 The simulation length is set at 1,000 years. Longer horizons do not affect the main results of this paper. 

13 The Gauss-Hermite integration is applied for the expectation in Equation (15) with 10 integration nodes. Higher 

number of nodes does not affect the main results of this paper. 
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guess 𝒃(0) using a pre-specified updating rule: 𝒃(1). Seventh, iterate the above process with the new guess 

𝒃(1) until the value function converges. 14  

Accounting for random realizations of the uncertain variables, the model is run 1,000 Monte Carlo 

simulations and the average of all simulations is presented in Sections 5 and 6. For additional results, see 

Appendix B. The true value of the total feedback factors is set at 0.6 (which corresponds to the 

equilibrium climate sensitivity 3°C/2xCO2, the most likely value according to the current scientific 

knowledge (See Stocker et al., 2013) throughout the results in this paper. The models are also simulated 

with a different true value of the total feedback factors and different initial beliefs, but the general 

implications of these simulations do not change (results not shown). 

5 Research investment and climate policy 

5.1 The rate of learning 

Figure 3 shows the evolutions of the climate sensitivity distribution. For comparison, the results of the 

learning model where learning takes place only from instrumental temperature observations (with the 

constant variance of temperature shocks) are also presented. Table 2 shows the corresponding probability 

of high temperature increases of each case. As expected, the mean parameter 𝑓̅ converges to the pre-

specified true value and the variance parameter 𝑣 approaches – but never reaches – zero over time. The 

rate of learning, measured as the reduction in the (simulated) coefficient of variation of the climate 

sensitivity, is higher under active learning with research investment than under passive learning only from 

temperature observations. It takes 45 years for the coefficient of variation to be reduced to a half level for 

improved observations whereas it takes 51 years in the passive learning model. This is because by 

                                                           
14 The maximum tolerance level is set at 10-4. 
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construction, learning in this paper constitutes an additional way to produce information. The probability 

density in the upper tail of the climate sensitivity distribution shrinks faster for active learning than for 

passive learning. Therefore the probability of high temperature increases is higher in the active learning 

model than in the passive learning model. For instance, the probability of temperature increases higher 

than 10℃ for active learning is more than 20 times higher than the one for passive learning case.  

For comparison, the learning time for 50% reduction in the coefficient of variation of the climate 

sensitivity is about 60~70 years in Webster et al. (2008) when the prior similar to the current paper is used 

(see Figure 10 of their paper). The rates of learning in Kelly and Kolstad (1999), Leach (2007), and Kelly 

and Tan (2013) are not directly comparable to the current paper since they define learning differently 

from ours: learning takes place in their models when the mean of the uncertain variable becomes 

statistically close (e.g., the significance level of 0.05) to the pre-specified true value.  

5.2 Optimal research investment and carbon tax 

The optimal level of investment in climate research is much higher than the current level of annual 

expenditures. For instance, the initial level of investment in the global climate observational system is 

about $340 billion per year, compared to the current level of about $450 million per year in 2005.  These 

results confirm that the benefits of learning are far greater than the costs of learning (Keller et al., 2007a,b; 

Baehr et al., 2008).  

After the initial peak, research investment decreases rapidly (see Figure 4). This reflects the point that 

early investment to reduce uncertainty is more beneficial because (1) it benefits from a longer future and 

(2) knowledge saturates in our model specifications. Note that research investment is here mostly in 

equipment rather than specialist personnel, so that a rapid scaling-up and –down is feasible. These results 
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imply that as the cost of learning is much lower than the benefit of learning, the optimal decision is to 

make uncertainty as low as possible.  

Nordhaus and Popp (1997) estimate that the value of information on the climate sensitivity is $6.9 ~ 

11.7 billion with a discrete uncertainty representation (i.e., 5 states of the world: mean, ±1 standard 

deviation, ±2 standard deviation) and exogenous learning. The value of information in their model is 

calculated as the difference in expected utility between instant learning and learning in 50 years. Peck and 

Teisberg (1993) estimate that the value of information on the climate sensitivity is $148 billion with a 

discrete uncertainty (i.e., 3 states of the world: 1, 3, 5°C/2xCO2) and exogenous learning. The value of 

information in their model is calculated as the difference in expected utility between instant learning and 

no-learning. If learning in 40 years is considered, the value of information is $24 billion. Keller et al. 

(2007a) estimate that the value of information associated with early detection of changes in the North 

Atlantic meridional overturning circulation (MOC) is a number in the tens of billions of dollars, which is 

far higher than the cost of MOC observation systems (tens of millions of dollars, see Baehr et al., 2007). 

Keller et al. (2007b) estimate that the value of information about climate sensitivity (with 3 states of the 

world) is about $10 billion, but they also find that the value of information increases substantially if there 

are climate thresholds. For instance, if there is a temperature limit of 2.5°C the value of learning about the 

climate sensitivity is $800 billion. Baker and Solak (2010) estimate that optimal level of R&D investment 

in energy technology under uncertainty about climate damages is on the order of tens of billions of dollars.  

It is well known that fat-tailed risk substantially increases the stringency of climate policy (Tol, 2003; 

Weitzman, 2009). Since the current paper deals with fat-tailed risk it is not surprising that the benefit of 

learning is greater in our model than in the literature.  

Learning substantially reduces the effect of fat-tailed risk since learning is faster in the tail. As a 

result, policy recommendations such as carbon tax as shown in the next paragraph would be substantially 
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different when there is a possibility of learning. The optimal carbon tax is calculated as a Pigovian tax as 

in the original DICE model (Nordhaus, 2008). As expected, the optimal carbon tax is highest for the 

uncertainty model and is lowest for the deterministic model (see Figure 5 and Table 3). Passive learning 

lowers the optimal carbon tax and active learning further reduces the carbon tax.  

6 Sensitivity analysis 

6.1 Cost of learning 

As shown in Figure 6, the level of research investment increases as the cost of learning increases. After 

the initial peak the research investment decreases to a low level, because knowledge saturates fast. This is 

intuitive in that the rate of variance-reductions from climate research (𝜕𝑣𝑡+1 𝜕𝐾𝑅𝑖,𝑡
⁄ ) diminishes as the 

research capital accumulates. Put differently, after the initial peak more effort is required for further 

variance-reductions: one unit of variance-reduction becomes more expensive over time.  

If the decision maker wants more (less) precise observations, the amount of money spent on the global 

observational system should be increased (decreased). For instance, if the decision maker sets a criterion 

that 𝜔𝑐=10-6 (10-4, respectively), instead of 10-5 as in the reference case, the level of investment is $3.4 

trillion ($34 billion, resp.) for the improved observations model. The initial level of investment does not 

grow as much as the upper bound if the cost of learning is high. For instance, the upper bound of 

investment is about $34 trillion for the case with 100 times the base cost, but the optimal investment is 

about $4.5 trillion.  
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6.2 Damage functions 

The effect of fat-tailed risk on climate policy is sensitive to the assumed shape of the damage function 

(Hwang et al., 2013). Table 3 presents the results when the damage function of Weitzman (2012), a 

highly reactive damage function, is applied. For comparison the results for the deterministic, uncertainty, 

and passive learning are also presented. The effect of the fat tail on climate policy is clear when the 

damage function of Weitzman (2012) is applied (see the results of the uncertainty model), but is greatly 

reduced when passive learning is introduced. Active learning further enhances this. 

6.3 True values of climate sensitivity 

We have assumed that our knowledge converges to the true value of climate sensitivity over time. 

However the true value is not known with certainty. This subsection investigates how sensitive our main 

results to the different true values of climate sensitivity.15 Figure 7 shows some results. We observe that 

the higher the true value of climate sensitivity, the fatter the right tail of climate sensitivity distribution. 

As expected, the corresponding temperature changes and optimal carbon tax are higher (lower, 

respectively) for the higher (lower, resp.) true value cases.  

Optimal research investment does not change much according to the true value of climate sensitivity: 

early investment to reduce uncertainty as much as possible (results not shown). One of the reasons is that 

the rate of learning about climate sensitivity is slow (see Section 5). Put differently, it takes a long time (a 

hundred years or more) for our knowledge to approach to the true value of the climate system. For 

instance, the probability of climate sensitivity being higher than 4.5℃/2xCO2 in 2055 in our model 

specifications is about 4.2% when the true value of climate sensitivity is 2℃/2xCO2. 

                                                           
15 Considering computational burden, we restrict ourselves to sensitivity analysis. For a full uncertainty analysis on 

the true value of climate sensitivity with a passive learning model, see Hwang et al. (2014).  
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6.4 Limits to learning 

As mentioned above, there are limits to learning. The variance of the components of temperature shocks 

other than measurement error remains fixed at 0.082 for the reference case in Section 5. This serves as the 

lower bound for the variance of temperature shocks. The sensitivity of the optimal carbon tax to this 

lower bound is shown in the top left panel of Figure 8. The optimal carbon tax decreases if the lower 

bound of temperature shocks decreases. Put differently, the higher is the magnitude of learning, the lower 

is the optimal carbon tax.  

7 Conclusions 

This paper investigates the impact of active learning on optimal climate policy. More specifically, 

learning about the climate sensitivity from investing in improved observations has been introduced into 

an integrated assessment model (IAM). The decision maker reduces the uncertainty about climate change 

through significant investment in climate research, two orders of magnitude greater than the current level 

of expenditures. This helps the decision maker make better decisions on climate policy. The level of 

uncertainty decreases more rapidly with active learning model than with passive learning. As a result, the 

optimal carbon tax is lower for active learning than the carbon tax with passive learning, which in turn is 

lower than the carbon tax without learning. The effect of learning is more pronounced as tail risk fattens.  

This paper is the first to introduce active learning into an integrated assessment model of climate and 

the economy. Applying alternative ways of learning would help to understand the role of learning further. 

This paper considers investments in improved monitoring of the global mean temperature. Other options 

include investment in climate research, which would sharpen the prior, and reconstructions of past 

temperature, which would increase the number of observations in the likelihood. However general 

conclusion would not change: 1) as the effect of uncertainty grows, learning plays a more significant role; 
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2) as long as the cost of learning is lower than the benefit of learning, it is optimal for the decision maker 

to invest in learning; 3) earlier investment in climate research is more beneficial than later investment; 

and 4) learning reduces the optimal carbon tax. 

Active learning apart, this paper closely follows Nordhaus’ DICE model. Other specifications should 

be explored, including alternative utility functions (e.g., Sterner and Persson, 2008), different mitigation 

cost and climate impact functions, and other economic growth models. Perhaps more importantly, we 

here posit a true value of the climate sensitivity, rather than a PDF, which exaggerates the effects of 

learning. We only consider one uncertain parameter, which suppresses both the effect of uncertainty and 

the cost of learning. We study the case of a global planner. Kolstad and Ulph (2008; 2011) show that 

uncertainty enhances cooperation. This would imply that active learning fosters free-riding. All these 

matters are deferred to future research. 

Active learning by improved monitoring also applies to other areas of public policy. Learning by 

experimentation with policy variables is informative for issues with a short characteristic life time – 

monetary policy, for instance – but less so for issues that span long periods – besides climate change, 

pensions and structural unemployment come to mind. The method proposed here applies to any area in 

which knowledge of the response to policy is imperfect partly due to imperfect monitoring.  
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Appendix A: The full model  

The list of variables and parameters are given in Tables A.1 and A.2.  

max
𝜇𝑡,𝑅𝑡

𝔼 ∑ 𝐿𝑡𝛽𝑡𝑈(𝐶𝑡 , 𝐿𝑡)

∞

𝑡=0

 (A.1) 

𝐶𝑡 = (1 − 𝜃1µ𝑡
𝜃2)𝛺𝑡𝑄𝑡 − 𝐼𝑡 − 𝑅𝑡  (A.2) 

𝐾𝑅,𝑡+1 = (1 − 𝛿𝑅)𝐾𝑅,𝑡 + 𝑅𝑡 (A.3) 

𝐾𝑡+1 = (1 − 𝛿𝑘)𝐾𝑡 + 𝐼𝑡 (A.4) 

𝑀𝐴𝑇 𝑡+1
= (1 − 𝜇𝑡)𝜎𝑡𝑄𝑡 + 𝐸𝐿𝐴𝑁𝐷𝑡

+ 𝛿𝐴𝐴𝑀𝐴𝑇 𝑡
+ 𝛿𝑈𝐴𝑀𝑈𝑡

    (A.5) 

𝑀𝑈𝑡+1
= 𝛿𝐴𝑈𝑀𝐴𝑇𝑡

+ 𝛿𝑈𝑈𝑀𝑈𝑡
    (A.6) 

𝑀𝐿𝑡+1
= 𝛿𝑈𝐿𝑀𝑈𝑡

+ 𝛿𝐿𝐿𝑀𝐿𝑡
    (A.7) 

𝑇𝐴𝑇𝑡+1
= 𝑇𝐴𝑇𝑡

+𝜉1{𝜂 ln (𝑀𝑡/𝑀𝑏) ln (2)⁄ + 𝑅𝐹𝑁,𝑡 − 𝜂𝑇𝐴𝑇𝑡
𝜆⁄ − 𝜉3(𝑇𝐴𝑇𝑡

− 𝑇𝐿𝑂𝑡 )}
 
+ 𝜀𝑡+1 (A.8) 

𝑇𝐴𝑇𝑡

𝑜𝑏𝑠 = 𝑇𝐴𝑇𝑡
+ 𝜀𝑡

𝑜𝑏𝑠  (A.9) 

𝑇𝐿𝑂𝑡+1
= 𝑇𝐿𝑂𝑡 + 𝜉4{𝑇𝐴𝑇𝑡

− 𝑇𝐿𝑂𝑡
}

 
 (A.10) 

𝑓𝑡+1
̅̅ ̅̅ ̅ =

𝑓𝑡̅ + 𝜁1𝑇𝐴𝑇𝑡
𝑜𝑏𝑠𝐻𝑡+1 𝑣𝑡 𝑣𝜀,𝑡⁄

1 + 𝜁1
2𝑇𝐴𝑇𝑡

𝑜𝑏𝑠2
𝑣𝑡 𝑣𝜀,𝑡⁄

 (A.11) 

𝑣𝑡+1 =
𝑣𝑡

1 + 𝜁1
2𝑇𝐴𝑇𝑡

𝑜𝑏𝑠2
𝑣𝑡 𝑣𝜀,𝑡⁄

 (A.12) 

𝑣𝜀,𝑡 = 𝛼𝑅1
𝐾𝑅𝑡

⁄ + 𝜎𝑜𝑡ℎ𝑒𝑟𝑠
2  (A.13) 

 

where 𝔼 is the expectation operator given information at point in time 𝑡 (annual). 
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Appendix B: Additional results 

Figure B.1 is the results for improved observations (the reference case in Section 5). Each figure is the 

average of 1,000 Monte Carlo simulations. This figure shows how each variable evolves over time. For 

instance the rate of emissions control gradually increases during the first 2~3 centuries and then reaches at 

one (full abatement). The carbon stock gradually decreases after the rate of emissions control becomes 

one. Atmospheric temperature follows the same pattern with a time lag. The maximum temperature 

increases (from 1900) are less than 4°C (in the early 22nd century) for all the cases. There is an initial peak 

in research investment and then the level of research investment becomes trivial. Consumption and gross 

investment (other than research investment) grows continuously since our model is based on the DICE 

model, which represents continuous economic growth.   

Figure B.2 shows the results of all runs. Almost all variables have high variation but it is less severe 

than the one for the learning model only with temperature observations. This is because there is additional 

learning in each learning model. 
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Figure 1 Uncertainty about global mean temperature (Left): The variance of global mean land air temperature 

(LAT) 1850-2006 (CRUTEM3, Brohan et al., 2006) as a function of the number of weather stations used to estimate 

the global mean temperature. (Right): The variance of global mean sea surface temperature (SST) 1925-2006 

(HadSST3, Kennedy et al., 2011) as a function of the number of observations used to estimate the global mean 

temperature. The data were obtained from John Kennedy (personal communication). 

 

 

Figure 2 Hypothetical learning dynamics No change refers to the case where the research capita stock remains the 

same as in the initial year. + $X/yr (respectively, - $X/yr) refers to the case where the research capital stock 

increases (resp., decreases) $X every year from the initial level.   
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Figure 3 Climate sensitivity distribution (Top left): The mean of the total feedback factors (Top right): The 

(simulated) coefficient of variation of the climate sensitivity. (Bottom left): Climate sensitivity distribution in 2055 

(0~10°C/2xCO2). (Bottom right): Climate sensitivity distribution in 2055 (10~20°C/2xCO2).  

 

 

Figure 4 Research investment  
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Figure 5 The optimal carbon tax  

 

Figure 6 Research investment (sensitivity analysis) 
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Figure 7 Sensitivity analysis (true values of climate sensitivity) (Top panels): Climate sensitivity distribution in 

2055 (Bottom left): Atmospheric temperature (Bottom right): The optimal carbon tax  

 

Figure 8 Sensitivity analysis (limits to learning)  
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Figure B.1 Additional results (improved observations) The units for investment, research investment, the carbon 

stock, temperature increases, and consumption are $1,000 per person, trillion dollars, GtC, °C, and $1,000 per 

person, respectively. 

 

Figure B.2 Additional results (all simulations) (Top): The mean of the total feedback factors (Upper middle): 

The variance of the total feedback factors (Lower middle): Temperature increases (relative to 1900) (Bottom): The 

optimal carbon tax (US$/tC) 
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Table 1 Global temperature observational system in 2005 

 

Number of 

instruments / 

observations 

(thousands) 

Unit cost (1,000US$) 

Installation Operation (per year) 

Low High Low High 

LAT Weather station 3,455 40 60 

SST 

Number of instruments  

VOS 5,429 
 

4 55 

Drifting Buoy 1,267 
 

4.5 7.8 

Moored Buoy 194 1,150 2,700 200 500 

Number of Observations  

VOS 1,169 

 
0.00023 Drifting Buoy 1,632 

Moored Buoy 179 

Sum 2,980 
  

Note: The number of land weather stations is the one used for building the database CRUTEM4 (Kennedy et al., 

2011). The number of voluntary observing ships, drifting buoys, and moored buoys are available at 

www.bom.gov.au/jcomm/vos and www.aoml.noaa.gov/phod/dac. The unit cost for land weather station is drawn 

from Mburu (2006). The unit costs for voluntary observing ships, drifting buoys, and moored buoys follow Kent et 

al. (2010), Meldrum et al., (2010), and Detrick et al., (2000), respectively. The unit cost for data transmission using 

satellite communication systems is about $0.23 per observation (North, 2007). The number of SST observations is 

drawn from Kennedy et al. (2011). 

 

Table 2 The probability of high temperature increase 

 

2055 2105 

Passive learning 
Improved 

observations 
Passive learning 

Improved 

observations 

Probability of climate 

sensitivity > 4.5℃/2xCO2 
0.158  0.120  0.050  0.019  

Probability of climate 

sensitivity  > 6℃/2xCO2 
0.053  0.032  0.006  0.001  

Probability of climate 

sensitivity  > 10℃/2xCO2 
0.009  0.004  1.665E-04 7.962E-06 

 

http://www.bom.gov.au/jcomm/vos
http://www.aoml.noaa.gov/phod/dac
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Table 3 The optimal carbon tax in 2015 (US$/tC) 

 
Deterministic 

𝑓=0.6 

Uncertainty 

𝑓=̅0.65, 𝜎𝑓=0.13 

Passive learning 

𝔼0𝑓=0.65, 𝜎𝑓=0.13 

Active learning  

𝔼0𝑓=0.65, 𝔼0𝜎𝑓=0.13 

DICE damage 

function 
32.0 39.0 37.6 35.8 

Weitzman’s 

damage function 
37.7 201.2 56.4 43.2 

 

Table A.1 Variables 

U Utility function =(𝐶𝑡 𝐿𝑡⁄ )1−𝛼 (1 − 𝛼)⁄  

𝐶𝑡 Consumption =(1 − 𝜃1µ𝑡
𝜃2)𝛺𝑡𝑄𝑡 − 𝐼𝑡 − 𝑅𝑖,𝑡 

µ
𝑡
 Emissions control rate Control variable 

𝑅𝑡 Investment in climate research Control variable 

𝐾𝑡 Capital stock 𝐾0=$137 trillion 

𝐾𝑅,𝑡 Research capital stock 𝐾𝑅,0=$950 million 

𝑀𝐴𝑇 𝑡
 Carbon stocks in the atmosphere 𝑀𝐴𝑇 0

=808.9GtC 

𝑀𝑈𝑡
 Carbon stocks in the upper ocean 𝑀𝑈0

=18,365GtC 

𝑀𝐿𝑡
 Carbon stocks in the lower ocean 𝑀𝐿0

=1,255GtC 

𝑇𝐴𝑇𝑡
 Atmospheric temperature deviations 𝑇𝐴𝑇0

=0.7307°C 

𝑇𝐿𝑂𝑡
 Ocean temperature deviations 𝑇𝐿𝑂0

=0.0068°C 

𝑓𝑡̅ Mean of the total feedback factors 𝑓0̅=0.65 

𝑣𝑡 Variance of the total feedback factors 𝑣0=0.132 

𝛺𝑡 Damage function =1/(1 + 𝜅1𝑇𝐴𝑇𝑡
+ 𝜅2𝑇𝐴𝑇𝑡

𝜅3 + 𝜅4𝑇𝐴𝑇𝑡

𝜅5 ) 

𝑄𝑡 Gross output =𝐴𝑡𝐾𝑡
𝛾

𝐿𝑡
1−𝛾

 

𝐼𝑡 Investment in general =𝑠𝑄𝑡𝛺𝑡 

𝐴𝑡 Total factor productivity Exogenous 

𝐿𝑡 Labor force Exogenous 

𝜎𝑡 Emission-output ratio Exogenous 

𝑅𝐹𝑁,𝑡 Radiative forcing from non-CO2 gases Exogenous 

𝐸𝐿𝐴𝑁𝐷𝑡
 

GHG emissions from the sources other than 

energy consumption 
Exogenous 

𝜀𝑡 Temperature shocks Stochastic 

𝑣𝜀,𝑡 Variance of observed temperature shocks  𝑣𝜀,0=0.12 

Note: The initial values for the state variables and the evolutions of the exogenous variables are from Cai et al. 

(2012), except for the research capital stock. The initial research capital stock does not affect the main results of this 

paper unless it is far higher than the default values. The lower bounds of the economic variables such as 

consumption, the capital stock, and gross world output are set to $0.001 per person per year in this paper. In addition, 

there are no upper bounds of temperature increases. 
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Table A.2 Parameters 

𝜆 Equilibrium climate sensitivity =𝜆0/(1-𝑓) 

𝑓 True value of the total feedback factors 0.6 

𝜆0  Reference climate sensitivity 1.2°C/2xCO2 

𝑠 Savings rate 0.245 

𝛼 Elasticity of marginal utility 2 

𝜌 Pure rate of time preference 0.015 

𝛾 Elasticity of output with respect to capital 0.3 

𝛿𝑘 Depreciation rate of the capital stock 0.1 

𝛿𝑅 Depreciation rate of research investment 0 

𝜅1, 𝜅2, 𝜅3, 𝜅4 Damage function parameters 𝜅1=0, 𝜅2=0.0028388, 𝜅3=2, 𝜅4=𝜅5=0 

𝜃1, 𝜃2 Abatement cost function parameters 𝜃1=0.0561, 𝜃2=2.887 

𝛿𝐴𝐴, 𝛿𝑈𝐴, 𝛿𝐴𝑈, 

𝛿𝑈𝑈, 𝛿𝑈𝐿, 𝛿𝐿𝐿, 

𝜉1, 𝜉3, 𝜉4, 𝜂 

Climate parameters 

𝛿𝐴𝐴=0.9810712, 𝛿𝑈𝐴=0.0189288, 

𝛿𝐴𝑈=0.0097213, 𝛿𝑈𝑈=0.005, 

𝛿𝑈𝐿=0.0003119, 𝛿𝐿𝐿=0.9996881, 𝜉1=0.022, 

𝜉3=0.3, 𝜉4=0.005, 𝜂=3.8 

𝛼𝑅 Learning parameters $3.42 million 

𝜎𝑜𝑡ℎ𝑒𝑟𝑠
2  Learning parameters 0.0064 

𝑀𝑏  Pre-industrial carbon stock 596.4GtC 

𝜔𝑐 

Parameter reflecting satisfaction of the 

decision maker with the magnitude of 

learning 

10−5 

𝑣𝜀,0 
Initial value of the variance of observed 

temperature shocks 
0.102 

Note: The parameter values for climate parameters are from Cai et al. (2012). The parameter value for 𝜆0 is from 

Roe and Baker (2007). The other parameters are from Nordhaus (1994; 2008) except for the learning parameters. 


