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Abstract. Copulas provide a flexible tool for analysing a possibly nonlinear dependence
relation among random variables. Here we consider the measure of dependence for the
extreme value copulas, which are obtained through the limting procedure and are related to
the extreme events. It is known that the Kendall’s tau and the Spearman’s rho are served
as such characteristic quantities of measure of concordance. We extend and generalize these
measures of association in the case of extreme value copulas.

1. Introduction

There has been much interest in the structure of dependence relations among risk fac-
tors both from theoretical and practical modeling viewpoint. To analytically measure such
dependence relations, several characteristic quantities have been introduced and widely em-
ployed, which include, to name a few, the population version of Kendall’s tau (τ) and/or
Spearman’s rho (ρ).

Copulas, on the other hand, are well recognized to provide a flexible tool for understanding
the dependence relation among random variables (see for example [3]). It is therefore also
known that the above τ and ρ are formulated in terms of copulas.

In this paper, we introduce a kind of generalized measures of dependence, which are
expressed through the form of copulas. In particular, we focus our study on a special class
of extreme value copulas (see [4]).

The so-called extreme value copulas naturally arizes in the field of extreme events and is
defined by certain limiting procedure. In the bivariate case, on which our attention is paid,
the extreme value copula is given through specific class of functions, known as Pickands de-
pendence function. With these concepts in hand, we propose a generalization of dependence
measures for extreme value copulas, which, we hope, may be served as a fitting criterion of
modeling.

This paper extends the contents of [5], which is supervised by the present authors. The
current version is based on new studies as well as necessary corrections of the previous one.
We refer also to our related work [6].

The paper is organized as follows: Section 2 gives basic definition and properties of copulas.
Our main results is addressed in Section 3. Examples of some computation are presented in
Section 4. Section 5 concludes with discussions.

2. Copulas and the mesures of dependence

We begin with recalling the definition of copulas in the case of bivariate joint distribution.
Definition. A function C defined on I2 := [0, 1] × [0, 1] and valued in I := [0, 1] is said to
be a copula if the following conditions are satisfied.
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(i) For every (u, v) ∈ I2,
C(u, 0) = C(0, v) = 0,

C(u, 1) = u and C(1, v) = v.
(2.1)

(ii) For every (ui, vi) ∈ I2 (i = 1, 2) with u1 ≤ u2 and v1 ≤ v2,

(2.2) C(u1, v1)− C(u1, v2)− C(u2, v1) + C(u2, v2) ≥ 0.

The requirement (2.2) is referred to as the 2-increasing condition. It is noted that a copula
is a continuous function by its definition.

The class of extreme value copulas, on which our main concern is placed, is defined as
follows.

Definition 1. A copula C∗ is called an extreme value copula if there exists a copula C such
that

C∗(u, v) = lim
n→∞

(C(u1/n, v1/n))n

for u, v ∈ I. C is said to belong to the domain of attraction of C∗.

The extreme value copula is known to be chracterized by a single function, which is stated
as follows.

Theorem 2. A bivariate copula C∗ is an extreme value copula if and only if

(2.3) C∗(u, v) = exp

(
log(uv)A

( log v

log(uv)

))
,

where A : I → [1/2, 1] is convex and verifies max{t, 1− t} ≤ A(t) ≤ 1 for every t ∈ I.

For the proof of above theorems, we refer for instance to a book by Nelsen [7]. The function
A is called the Pickands dependence function.

The population version of Kendall’s tau (τ) and Spearman’s rho (ρ) are well known mea-
sures of dependence. It is also known that τ and ρ can be represented in terms of copulas.
Precisely, let X and Y be continuous random variables whose copula is C. Then we have

τX,Y = τC = 4

∫∫
I2
C(u, v)dC(u, v)− 1 = 1− 4

∫∫
I2

∂C

∂u
(u, v)

∂C

∂v
(u, v) dudv,

=

∫ 1

0

t(1− t)

A(t)
dA′(t)

ρX,Y = ρC = 12

∫∫
I2
uvdC(u, v)− 3 = 12

∫∫
I2
C(u, v) dudv − 3

= 12

∫ 1

0

1

(1 + A(t))2
dt− 3.

In the next section, we discuss a kind of generalizations for above measures of association.

3. Extensions and generalizations

Now we want to extend and generalize the measures M(C) of dependence involving the
copula C, which should be of the form

(3.1) M(C) =

∫∫
I2
f(u, v, C(u, v))dC(u, v),
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where f = f(u, v, C) is an appropriate smooth function nondecreasing in C, whose detailed
assumptions should be clarified below. For example of this form, we note that the Kendall’s
tau is provided by

f(u, v, C) = 4C − 1

and the Spearman’s rho is
f(u, v, C) = 12uv − 3.

Therefore we understand that the formula (3.1) is a natural generalization. We here remark

that

∫∫
I2
dC(u, v) = 1.

To proceed, we have to recall that M. Scarsini [8] has formulated a set of axioms that a
measure M(C) of concordance for every bivariate copula C should satisfy (see [2]):

(1) −1 ≤ M(C1) ≤ M(C2) ≤ 1 if C1 ≤ C2;
(2) M(C) = M(CT ), where CT is the transpose of C, namely, CT (u, v) := C(v, u);
(3) M(Π) = 0, where Π(u, v) := uv is the product copula;
(4) M(Cσ1) = M(Cσ2) = −M(C), for the symmetries σ1, σ2 of I2, that is, for example

Cσ1(u, v) = v − C(1− u, v);
(5) if Cn → C uniformly as n → ∞, then limn→∞ M(Cn) = M(C).

Concerning these axioms, we also refer to [1][9][10] for related topics. Moreover, as to the
axiom (1), it customarily suffices to impose that

M(W ) = −1 and M(M) = 1

for the boundary condition, where W (u, v) := max{u+ v − 1, 0} and M(u, v) := min{u, v}.
This is due to the so-called Hoeffding-Fréchet bounds: W (u, v) ≤ C(u, v) ≤ M(u, v) for
every copula C.

However, the class E of extreme value copulas, with which we are concerned, is not neces-
sarily invariant by symmetries. To be precise, it does not follow that C ∈ E implies Cσ1 ∈ E
nor Cσ2 ∈ E . We thus do not take into account the axiom (4) above in this study and we
presume that our (3.1) should verify the set of axioms (1)(2)(3)(5). Even this set of axioms
will make certain restriction on f .

Furthermore, we confine ourselves to the case f = f(uv) for simplicity, and we wish to
consider a generalized measure of concordance of the form

(3.2) M(C) =

∫∫
I2
f(uv)dC(u, v).

Our main result now reads as follows.

Theorem 3. Let f = f(t) be a nondecreasing smooth function which satisfy

∫ 1

0

(1
t

∫ t

0

f(s)ds
)
dt = 0,∫∫

I2
f(uv)dW (u, v) ≥ −1,

∫∫
I2
f(uv)dM(u, v) ≤ 1, where at least one equality holds.

(3.3)

Then for the measure M(C) of concordance (3.2) with C being the extreme value copula
(2.3) above, we have

(3.4) M(C) =

∫ 1

0

(f(s)− sf ′(s))ds+

∫ 1

0

dt

∫ 1

0

(f ′(s) + sf ′′(s))sA(t) log s ds.
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Sketch of Proof. The proof is just an elementary computation. We make the change variables
t = log v/ log(uv) and (u, v) → (u, t). Then we see that v = ut/(1−t) and

dudv =
u

t
1−t log u

(1− t)2
dudt.

The conditions (3.3) comes from the axioms (2) and (1). We may safely omit the details. □.

4. Examples

We here present examples to illustrate our method.
Example 1. If we take

(4.1) fn(t) =
(2n+ 1)(n+ 1)2

n2
tn − 2n+ 1

n2
(n = 1, 2, · · · )

and compute the corresponding formula for (3.1). We infer that

M(C) = (2n+ 1)(n+ 1)2
∫∫

I2
(uv)n−1C(u, v)dudv − (2n+ 1)

= (2n+ 1)(n+ 1)2
∫ 1

0

dt

(n+ A(t))2
− (2n+ 1).

If we take A(t) = (tθ + (1 − t)θ)1/θ with θ ≥ 1, where we recover the so-called Gumbel-
Hougaard family of copulas, then we learn that

M(C) = (2n+ 1)(n+ 1)2
∫ 1

0

dt

(n+ (tθ + (1− t)θ)1/θ)2
− (2n+ 1).

Example 2. If we take

f(t) = 2− 2 log 2−
∫ 1

0

1

w
log(1 + w)dw + log(1 + t).

Then we see that

M(C) = 2− 2 log 2−
∫ 1

0

1

s
log(1 + s)ds

+

∫ 1

0

log(1 + s)ds−
∫ 1

0

s

1 + s
ds−

∫∫
I2

1

(1 + s)2
sA(t) log s dsdt

= log 2−
∫ 1

0

1

s
log(1 + s)ds−

∫∫
I2

1

(1 + s)2
sA(t) log s dsdt.

5. Discussions

We have developed a generalization of a measure of concordance for the class of extreme
value copulas which are given through the limiting procedure and are related to the modeling
of extreme events. Utilizing the representation formula, we are able to obtain a generalized
formula for the measure of association. Examples show that with this formula the computa-
tion becomes rather straightforward. We hope that our methodology may serve as a handy
tool of comparing the effect of dependence model.

There remain several points to be discussed further; one of these is the pursuit of more
generalization. This will be interesting both from theoretical and practical points of view.
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