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Abstract

Occasionally binding credit constraints (OBC) have recently been explored as a promis-

ing way of modeling financial frictions. However, given their highly non-linear nature,

most of the literature has concentrated on small models that can be solved using global

methods. In this paper, we investigate the workings of OBC introduced via a smooth

penalty function. This allows us to move towards richer models that can be used for

policy analysis. We show that in a deterministic setting the OBC approach delivers

welcome features, like asymmetry and non-linearity in reaction to shocks. However,

feasible local approximations, necessary to generate stochastic simulations, suffer from

fatal shortcomings that make their practical application questionable.
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1 Introduction

Dynamic, stochastic general equilibrium (DSGE) models featuring financial frictions have

recently become highly popular both at central banks and in the academic world. Their

applications range from explaining the role of financial shocks during the crisis (Gerali et

al., 2010; Iacoviello and Neri, 2010; Brzoza-Brzezina and Makarski, 2011), through analyzing

optimal monetary policy in the presence of financial frictions (Cúrdia and Woodford, 2008;

De Fiore and Tristani, 2013; Carlstrom et al. (2010); Kolasa and Lombardo, 2014) to the

impact of macroprudential regulations on the economy (Angeloni and Faia, 2013; Meh and

Moran, 2010; Aliaga-Dı́az and Olivero, 2012).

A substantial part of the literature features financial frictions in the form of credit con-

straints. In this concept, that can be traced back to the seminal paper of Kiyotaki and Moore

(1997), some agents (entrepreneurs or households) are limited in their borrowing capacity by

the amount of collateral that they can provide to the lender. The constraint is assumed to be

eternally binding, which facilitates the model solution as standard perturbation techniques

can be applied. A number of papers followed Iacoviello (2005) and used this approach to

model frictions in the housing market. However, while conceptually and computationally

attractive, the eternally binding constraint (EBC) setup suffers from a major shortcoming.

As documented by Brzoza-Brzezina et al. (2013), the permanent nature of collateral con-

straints generates strong, short-lived and symmetric reactions of macroeconomic variables

to shocks. This means in particular that the EBC modeling strategy does not allow to

distinguish between “normal” and “stress” periods.

This model feature seems inconsistent with empirical evidence. Table 1 presents the

skewness (i.e. the third standardized moment) for main variables related to the housing

market. The reason for looking at this part of the economy is its important role in driving

the business cycle as identified in the financial frictions literature (see e.g. Iacoviello and

Neri, 2010). It is clear that residential investment, housing stock, change in mortgage loans

and house price inflation are all skewed downwards, i.e. left tail events are relatively more

frequent. This suggests either that shocks affecting the housing market are asymmetric, or

that it responds to symmetric shocks in a skewed fashion.

In this paper we follow the second option by considering a model in which asymmetries
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emerge endogenously from constraints facing the agents.1 Such an approach has not only a

more structural flavor, but also seems to be supported by some recent empirical literature. In

particular, Hubrich and Tetlow (2012) show that negative output effects of financial shocks

are much more pronounced and long-lasting in times of high financial stress than in normal

times. Kaufmann and Valderrama (2010) show that amplifying effects of loan shocks work

in a highly nonlinear fashion. They identify periods during which loan shocks have only

moderate effect on GDP and periods when they strongly amplify the cycle.

Collateral constraints are certainly important in real life and potentially useful for mod-

eling purposes. However, the discussion presented above suggests that they should not be

applied in a permanently and symmetrically binding fashion. A preferred specification would

feature constraints that do not matter under normal circumstances (from the modeling per-

spective: in the vicinity of the steady state), but become binding occasionally, i.e. during

episodes of unfavorable economic conditions (e.g. after a series of negative macroeconomic

or financial shocks).

The idea of occasionally binding constraints (OBC) is not new (e.g. Christiano and

Fisher, 2000; Mendoza, 2010; Brunnermeier and Sannikov, 2014). However, given their highly

non-linear nature, they should ideally be solved with global methods. Due to the curse of

dimensionality, however, these can be applied only to relatively small models with a limited

number of state variables. In spite of the progress achieved in the area of global solution

techniques in recent years, such methods are still out of range for models of the size used for

practical policymaking, i.e. featuring a number of real and nominal rigidities. For instance,

Fernández-Villaverde et al. (2012) use collocation methods to solve a New Keynesian model

at the zero lower bound. However, their model features only five state variables. Adding

standard features of models currently used at central banks like endogenous capital, habit

formation, wage rigidity, interest rate inertia or indexation (Christiano et al., 2005; Smets

and Wouters, 2003) would more than triple the number of state variables, making a global

solution impossible to obtain in reasonable time. At the same time, adding these frictions

1In terms of methodological approach, this paper is hence related to the literature investigating asym-
metries arising from downward nominal rigidities (see e.g. Kim and Ruge-Murcia, 2009; Fahr and Smets,
2010) or the zero lower bound on nominal interest rates (Eggertsson and Woodford, 2004; Adam and Billi,
2006). The alternative approach, i.e. generating skewness by feeding skewed shocks into a linearized model,
is followed e.g. by Grabek et al. (2011).
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seems indispensable when the models are to be applied for instance for analyzing business

cycle consequences of macroprudential policies. For such models, local solution methods are

still the only feasible option.

For these reasons, we thoroughly investigate a potentially attractive shortcut to approx-

imate occasionally binding constraints that has been introduced by Luenberger (1973) and

Judd (1998), and more recently advocated by De Wind (2008), i.e. the so-called barrier

or penalty function method. This approach essentially consists in converting inequality

constraints into equality constraints, making the use of standard perturbation techniques

possible. It has been applied to a range of medium-sized macroeconomic models e.g. by

Rotemberg and Woodford (1999), Preston and Roca (2007) and Kim et al. (2010).2 To this

end, we construct a DSGE model with a standard set of rigidities and collateral constraints

in the spirit of Iacoviello (2005), except that the latter are introduced in the form of a smooth

penalty function. We parametrize the model in such a way that the constraint does not play

an important role close to the steady state, but becomes binding when the economy is hit by

sufficiently large negative shocks. Next, we investigate the main features of the model both

under perfect foresight and in a stochastic setting using its local approximations of various

orders.

Our main findings are as follows. First, the introduction of occasionally binding con-

straints via the penalty function approach allows to generate asymmetric and non-linear

reactions of the economy to shocks. Second, this feature can be also reproduced for local ap-

proximations, though only for orders higher than two. Third, and less optimistic, stochastic

simulations for 2nd, 3rd and 4th order approximations suffer from serious stability prob-

lems that make them inapplicable in practice. This finding stands in contrast to De Wind

(2008), who shows that for a simple model with a penalty function higher order perturbation

can be a feasible solution method. We show that this result does not translate into more

sophisticated models. Approximations of order higher than four are, on the other hand,

prohibitively expensive in terms of storing and computing power for medium-sized business

2An alternative approach that has been recently proposed to tackle occasionally binding constraints is the
piecewise-linear perturbation method of Guerrieri and Iacoviello (2015). This method is attractive because
it can be easily applied to models with many state variables. However, in contrast to the penalty function
method, it ignores the precautionary motives that are linked to the possibility of hitting the constraint. As a
result, the piecewise-linear method cannot be used to evaluate welfare implications of alternative stabilization
policies.
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cycle models. Moreover, even when simulations can be kept stable, the approximated shape

of the penalty function is frequently inconsistent with its assumed functional form (e.g. it

becomes close to parabolic for even order approximations). All in all, while being practical

for non-stochastic models, the penalty function approach unfortunately fails to fulfill our

expectations in a stochastic environment. This makes it an attractive way of introducing

financial frictions into deterministic models like GEM (Tchakarov et al., 2004) or EAGLE

(Gomes et al., 2012). However, a fully fledged application in a realistic stochastic framework

seems currently out of range.

The rest of the paper is structured as follows. In Sections 2 and 3 we present the model

and its calibration. Section 4 uses deterministic simulations to present the model’s features.

In section 5 we investigate the performance of local approximations and their usefulness in

generating stochastic simulations. Section 6 concludes.

2 Model

We consider a closed economy DSGE model in the spirit of Iacoviello (2005), where some

agents face collateral constraints on their borrowing. In this section we first sketch out the

structure of the model and then present two alternative specifications of the credit constraint,

i.e. the EBC and OBC variants.

2.1 Households

There are two types of households indexed by ι on a unit interval: patient of measure ωP

and impatient of measure ωI = 1− ωP .3

2.1.1 Patient households

In each period, patient households decide on their consumption of goods cP,t and housing

services χP,t, labor supply nP,t, capital stock kt and savings deposits in the banking sectorDt.
4

3We employ the following notational convention: all variables denoted with superscript P or I are ex-
pressed per patient or impatient household, respectively, while all other variables are expressed per all house-
holds. For example, kt denotes per capita capital and since only patient households own capital, capital per
patient households is equal to kP,t = kt/ωP .

4We calibrate the model so that patient households save and never borrow. Therefore, to simplify notation,
we eliminate credits (which they would not take anyway) from their budget constraint. Similarly, we eliminate
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There are no financial frictions on the depositors’ side and hence patient households can save

at the policy (interbank) rate Rt. They are also assumed to own all firms and banks in the

economy, which pay them dividends ΠP,t.

Households maximize the following lifetime utility function (with external habit formation

in consumption and housing)

E0

{
∞∑
t=0

βtP

[
(cP,t(ι)− ξccP,t−1)1−σc

1− σc
+ Aχ

(χP,t(ι)− ξχχP,t−1)1−σχ

1− σχ
− An

nP,t(ι)
1+σn

1 + σn

]}
(1)

subject to the budget constraint

PtcP,t (ι) + Pχ,t(χP,t (ι)− (1− δχ)χP,t−1 (ι)) + Pk,t(kP,t(ι)− (1− δk)kP,t−1(ι)) +Dt (ι) ≤

≤ WP,tnP,t (ι) +Rk,tkP,t−1(ι) +Rt−1Dt−1 (ι) + ΠP,t (2)

where Pt denotes the price of consumption goods, Pχ,t is the price of housing, Pk,t is the price

of capital, WP,t stands for patient households’ nominal wage, while Rk,t is the rental rate on

capital.

2.1.2 Impatient households

Impatient households choose in each period the level of consumption cI,t and housing services

χI,t, as well as labor supply nI,t. Furthermore, we assume that impatient households can

take differentiated loans from banks of measure one, which they aggregate according to the

following formula

LI,t(ι) =
[ˆ 1

0

LI,t(ι, j)
1
µL dj

]µL
(3)

where LI,t (ι, j) denotes a loan taken by household ι from bank j. This specification gives

rise to the following definition of the interest rate on loans RL,t

RL,t =

[ˆ 1

0

RL,t(j)
1

1−µL

]1−µL

(4)

deposits from impatient households’ budget constraint (6).
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where RL,t(j) denotes the interest rate charged by bank j.

Impatient households maximize the following lifetime utility function

E0

{
∞∑
t=0

βtI

[
(cI,t(ι)− ξccI,t−1)1−σc

1− σc
+ Aχ

(χI,t(ι)− ξχχI,t−1)1−σχ

1− σχ
− An

nI,t(ι)
1+σn

1 + σn

]}
(5)

subject to the budget constraint

PtcI,t (ι) + Pχ,t(χI,t (ι)− (1− δχ)χI,t−1 (ι)) +

ˆ 1

0

RL,t−1(j)LI,t−1(ι, j)dj ≤

≤ WI,tnI,t (ι) + LI,t (ι) (6)

the formula for loans (3) and the collateral constraint

RL,tLI,t (ι) ≤ mχ,tEt {Pχ,t+1} (1− δχ)χI,t (ι) (7)

where WI,t denotes the impatient households’ nominal wage and mχ,t is a loan-to-value

(LTV) shock that follows an AR(1) process with a mean mχ, persistence ρm and a standard

deviation of innovations σm.

2.1.3 Labor market

Both patient and impatient households offer differentiated labor services. Each household

supplies monopolistically distinct labor services to competitive aggregators, who transform

them into homogenous labor input according to the following formula

nt =
[
ωP
(
nPt
) 1
µn + (1− ωP )

(
nIt
) 1
µn

]µn
(8)

where

nP,t =

[
1

ωP

ˆ ωP

0

nP,t(ι)
1
µw dι

]µw
(9)

nI,t =

[
1

ωI

ˆ ωI

0

nI,t(ι)
1
µw dι

]µw
(10)

We assume that households set their nominal wages WP,t and WI,t according to the
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Calvo scheme. In each period, each household with probability (1− θw) receives a signal to

reoptimize its nominal wage. Otherwise, wages are indexed according to πζw,t = ζwπt−1 +

(1− ζw)π where πt ≡ Pt/Pt−1 and π denote, respectively, inflation and its steady state value.

We assume perfect risk sharing across households of the same type. As a result, wage

stickiness does not create additional heterogeneity in consumption and housing choices be-

tween the agents.

2.2 Producers

In our model economy there are several types of firms, all owned by patient households

and hence using their marginal utility as a discount factor. Producers of differentiated

intermediate goods operate in a monopolistically competitive environment and sell their

goods to final goods producers who aggregate them into final goods. The final goods are

next either consumed or purchased by capital and housing producers, who combine them

with the existing capital and housing stocks, and resell to households.

2.2.1 Capital and housing producers

In each period, perfectly competitive capital and housing goods producers purchase unde-

preciated capital and housing stocks from the previous period and produce new capital and

housing according to the following formulas

kt = (1− δ) kt−1 +
(

1− Sk
( ik,t
ik,t−1

))
ik,t (11)

and

χt = (1− δ)χt−1 +
(

1− Sχ
( iχ,t
iχ,t−1

))
iχ,t (12)

where ik,t and iχ,t denote, respectively, capital and housing investment. We assume that

Sk

(
ik,t
ik,t−1

)
= κk

2

(
ik,t
ik,t−1

− 1
)2

and Sχ

(
iχ,t
iχ,t−1

)
= κk

2

(
iχ,t
iχ,t−1

− 1
)2

.

2.2.2 Final goods producers

Final goods producers operate in a competitive setting. They purchase differentiated inter-

mediate goods yt(i) of measure one and aggregate them into final good yt according to the

8



following technology

yt =
( ˆ

yt(i)
1
µdi
)µ

(13)

2.2.3 Intermediate goods producers

Intermediate goods producers, indexed by i, combine labor and capital with the following

technology

yt(i) = ztkt(i)
αnt(i)

1−α (14)

where zt denotes productivity shock that follows an AR(1) process with persistence ρz and a

standard deviation of innovations σz. They operate in a monopolistically competitive envi-

ronment and set their prices according to the Calvo scheme. In each period, each producer

i with probability (1 − θ) receives a signal to reoptimize its price. Otherwise, prices are

indexed according to πζ,t = ζπt−1 + (1− ζ)π .

2.3 Closing the model

2.3.1 Financial intermediation

In our economy there are no frictions between deposits and the interbank market, so patient

households earn the policy (interbank) rate on their deposits. However, the lending rate and

the interbank rate are different. This is due to the presence of a continuum of monopolistically

competitive lending banks which borrow in the interbank market at the policy rate to finance

differentiated loans extended to households at the lending rate RL,t(j). By solving the banks’

problem subject to the demand for loans from impatient households, we get the following

equilibrium relation between the lending rate and the policy rate

RL,t = µLRt (15)

2.3.2 Monetary policy

The monetary authority sets the policy rate according to the standard Taylor rule

Rt

R
=

(
Rt−1

R

)γR [(πt
π

)γπ (yt
y

)γy]1−γR
eεR,t (16)
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where variables without time subscripts denote their steady state values and εR,t is a mone-

tary policy shock with a standard deviation σR.

2.3.3 Market clearing

We impose a standard set of market clearing conditions. In particular, housing market

clearing implies

ωPχP,t + ωIχI,t = χt (17)

and the aggregate resource constraint is

yt = ct + ik,t + iχ,t (18)

2.4 Occasionally and eternally binding credit constraints

A standard way of dealing with the inequality constraint (7) is to assume that it is eternally

binding. This is legitimate if impatient households’ discount factor is low and shocks hit-

ting the economy are sufficiently small. Hence, if we define the Lagrange multiplier on the

collateral constraint as Θt/RL,t, the EBC variant results in the following Euler equation

uI,c,t = Et
{
βIuI,c,t+1π

−1
t+1

}
RL,t + Θt (19)

where uI,c,t denotes impatient agents’ marginal utility of consumption.

While solving the problem with occasionally binding credit constraints (OCB), we follow

De Wind (2008) and approximate the inequality constraint (7) by a smooth penalty function

Ψt =
1

η
exp [ηΓt] (20)

where Γt ≡ Et {RL,tlI,t −mχ,tpχ,t+1πt+1(1− δχ)χI,t}, lI,t ≡ LI,t/Pt and pχ,t ≡ Pχ,t/Pt. The

derivative of this penalty function with respect to lI,t ,which we will refer to as the penalty

function slope, is equal to

Ψl,t = RL,t exp [ηΓt] (21)
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and the Euler equation becomes

uI,c,t = Et
{
βIuI,c,t+1π

−1
t+1

}
RL,t + Ψl,t (22)

Therefore, depending on the setting, financial frictions manifest themselves in either Θt

or Ψl,t. One of the problems with the EBC variant is that Θt can go negative (i.e. the

assumption on the eternally binding nature of the constraint is violated) in simulations with

sufficiently strong credit easing. This setup also produces very little asymmetry between

responses to positive and negative shocks. In contrast, since Ψl,t is increasing and convex

in Γt, the OBC variant will generate asymmetric responses to changes in credit conditions.

In particular, if η → ∞, the penalty function collapses to the inequality constraint, i.e.

exogenous credit easing (tightening) will have no (very strong) effect on the economy.

3 Calibration

We calibrate the model to the US economy. The time frequency is quarterly. The exact

values of the calibrated parameters are presented in Table 3.

We take most of the parameters from the literature. The discount factor for patient

households is set to 0.99, which is a standard value for quarterly data. We choose the

annual depreciation rate for capital and housing of 8% and 3.5%, respectively. The inverse

of the intertemporal elasticity of substitution in consumption and housing, as well as the

inverse of the Frisch elasticity of labor supply are all set to 2, as it is common in the macro

literature. We calibrate the degree of external habit formation both in consumption and

housing at 0.7. The Calvo parameters for wages and prices are set to 0.75, while the respective

indexation parameters are assumed to be 0.5. We choose the same markups in the labor and

product markets of 1.2, which is in line with the literature. The elasticity of substitution

between labor of patient and impatient households is calibrated at 6. Following Christiano

et al. (2005), we choose the capital adjustment cost curvature parameter equal to 5 and,

since the process of housing accumulation seems to be of a similar nature, we parametrize

housing adjustment costs in the same way. For the Taylor rule, we assume a standard set

of parameters, i.e. interest rate smoothing γR equal to 0.9, the inflation coefficient γπ of 1.5
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and the output coefficient γy equal to 0.5. The steady state annual inflation rate is set to

2%.

There are several parameters that are calibrated to match some key steady state ratios,

summarized in Table 2. In particular, we set the housing weight in utility to match the

residential investment share in GDP, the capital elasticity of output to match the physical

capital investment share in GDP, the labor weight in utility to match the steady state hours,

the share of impatient households to match the share of loans in GDP, and the markup in

financial intermediation to match the spread between the lending rate and the policy rate.

Finally, the steady state LTV ratio is set to 75%.

A crucial part of our calibration concerns parametrization of the penalty function. Ideally,

we would like to make it as steep as possible (i.e. set η to a large number) since that brings us

closer to the original non-equality constraint given by equation (7). However, as discussed by

De Wind (2008), there is a trade-off between the amount of penalty function curvature and

feasibility of solving the model using perturbation techniques. Since one of our goals is to

investigate the ability of the OBC framework to generate reasonable stochastic simulations

(which, given the model size, requires low order approximations), we opt for a moderate

value of η = 50.

The workings of the OBC framework depend not only on the overall curvature of the

penalty function, but also on how the penalty function responds to changes in leverage in

normal times. It can be shown that, given the calibration choices discussed above, the steady

state slope of the penalty function Ψl is controlled by the impatient households’ discount

factor. To see it, it is instructive to look at equation (22) evaluated in the steady state:

Ψl = uI,c(1− βI
Rχ

π
) = uI,c(1− βI

µL
βP

)

where the second equality follows from patient households’ Euler equation and the solution

to financial intermediaries’ problem given by equation (15).

Hence, if we want the credit constraint to be literally not binding in normal times, the

penalty function should be perfectly flat in the vicinity of the steady state, which can be

achieved by setting the impatient households’ discount factor close to its upper bound of

βPµ
−1
L . However, since the penalty function is strictly positive and increasing in leverage,
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low Ψl also implies that the steady state leverage will be far from the one at which the

constraint starts binding. We solve this trade-off by allowing the collateral constraint to be

moderately binding in the steady state. More precisely, we set βI to 0.985, which translates

into a difference between impatient households’ subjective rate of time preference β−1
I and

the steady state real lending rate Rχπ
−1 of 50 bp (annualized). This parametrization also

implies the steady state leverage ratio (repayment value of loans over the expected value of

accepted collateral) equal to 74%, i.e. 1 pp. below the LTV ratio.

In the simulation exercises discussed in the next section we use three shocks, all of which

are calibrated outside of the model. The productivity shock is calibrated similarly to Coo-

ley and Prescott (1995), while the monetary shock parametrization comes from Smets and

Wouters (2007). The LTV shock process is estimated using the data on the loan to price

ratio reported by the Federal Housing Finance Agency in its Monthly Interest Rate Survey.

4 Non-approximated solution

In this section we discuss the workings of the OBC framework using a selection of determin-

istic (i.e. perfect foresight) simulations generated from the model laid out above. In such a

non-stochastic environment one does not need to rely on any approximation of the decision

rules implied by the model. This allows us to fully assess the degree of non-linearities and

asymmetries embedded in the model due to the presence of the penalty function.5

4.1 The mechanics of occasionally binding constraints

We start by demonstrating how parametrization of the model, and the penalty function in

particular, affects the workings of the OBC setup. As mentioned in the previous section,

there are two key parameters in this respect: the impatient households’ discount factor βI

and the penalty function curvature η.

We first examine how the model dynamics is affected by βI , holding the the penalty

function curvature η as in our baseline calibration. As discussed in the previous section, the

5All model simulations are performed using Dynare and Dynare++. See Adjemian et al. (2011).
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higher βI , the flatter the penalty function in the steady state, i.e. the further the steady state

equilibrium from the steep part of the penalty function. Consequently, for a given degree of

curvature η, large βI implies little effect of small changes in LTV around the steady state on

credit conditions. This effect is illustrated in Figure 1. If the inverse of βI almost equals the

long-run real interest rate paid on loans, a fall in LTV (starting from the steady state) has

virtually no effect on other variables. Decreasing this parameter implies moving up along the

penalty function. Since Ψl,t is increasing and convex, it responds much more if the simulation

starts at higher leverage.

We use an analogous set of simulations to highlight the role of the penalty function

curvature, holding βI as in our baseline calibration. In Figure 2 we compare three alternative

calibrations of OBC to the eternally binding benchmark. The OBC setups generate declines

in loans that are far more moderate and hence more consistent with the volatility of mortgage

loans observed in the data.6 Also, the reactions are much smoother, often displaying hump-

shaped patterns.7 If the collateral constraint binds at all times, the inertia in responses

is substantially subdued and for some variables (output, consumption, loans) the strongest

reaction occurs on impact.

Again, these differences can be traced back to the response of the penalty function slope

(Ψl,t for OBC) or the normalized Lagrange multiplier on the constraint (Θt for EBC) as both

measure the tightness of credit conditions. Naturally, the steeper the penalty function (i.e.

the higher η), the more similar the responses under the two model versions. However, even

for η = 100, i.e. a relatively big curvature, the increase in the constraint’s tightness is more

than four times smaller under OCB than under EBC, which translates into a more muted

and inertial contraction in loans in the former variant.

6The standard deviation of HP-filtered real mortgage loans in the US over the period of 1950-2010 is
below 1%.

7The empirical literature gives support to inertia in reaction to financial shocks. For instance,
Assenmacher-Wesche and Gerlach (2008) present hump-shaped impulse responses to credit shocks (with-
out identifying whether they originate from demand or supply) from a VAR. Kose et al. (2011) identify
credit supply shocks in a FAVAR framework and obtain hump-shaped impulse responses. Gilchrist and Za-
krajsek (2012) use a VAR to extract shocks to the excess bond premium, also finding hump-shaped reactions
of standard macrovariables.
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4.2 Can the OBC setup generate sizable asymmetries?

As discussed in the introduction, skewness in housing market indicators is a stylized fact

of the US business cycle. Therefore, we next examine to what extent the asymmetry em-

bedded in the OBC penalty function can generate skewness in the responses of the main

macrocategories, and housing market variables in particular.

Naturally, as the exponential function is smooth, we can expect to obtain non-negligible

asymmetries only for sufficiently large shocks. This point is illustrated in Figure 3, where we

plot positive and negative responses to standard (0.45%) and large (3%) LTV shocks. For

an LTV shock of a typical magnitude, the effects of a credit tightening are mirror images of

the effects of a credit easing. However, if we consider relatively large shifts in the collateral

requirements, clear asymmetries emerge, both in terms of size and shape of the impulse

responses. The most notable example are mortgage loans, that fall strongly after an LTV

tightening and increase only moderately in response to an LTV easing. This asymmetry

in impatient agents’ borrowing conditions is strong enough to translate into asymmetries in

consumption and output. The contraction in residential investment exhibits more persistence

than it is the case during expansion. Finally, a large negative LTV shock generates a decline

in real house prices that is larger than an increase resulting from an LTV easing of the same

magnitude.

Virtually all of these asymmetries can be traced back to the workings of the penalty

function. As a result, they will be non-negligible only for shocks that sufficiently affect the

credit conditions. As an LTV shock has a direct impact on impatient agents’ ability to

borrow, its potential to generate sizable asymmetries is relatively large. Productivity shocks

affect the credit conditions via their impact on the price of collateral and real value of debt,

and hence can generate substantial asymmetry in loans as well. As can be seen in Figure 4,

depicting the responses to relatively large (1.5%, i.e. three standard deviations) productivity

shocks, loans fall both in response to positive and negative shocks. In the former case, the

reason is the fall in house prices and the Fisher debt deflation effect, which tighten the

collateral constraint. In the latter, the credit conditions barely change and the fall in loans

is driven by patient agents’ consumption smoothing motive, which decreases their demand

for deposits and hence the supply of loans available to impatient households. This skewness
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in loans translates into some asymmetry in residential investment and consumption, and

hence output.

A similar pattern can be observed for big monetary shocks (Figure 5). Also in this case,

loans contract both in response to a monetary easing and tightening. This time, however,

the resulting asymmetries in output are relatively small, even though the size of the shock

is substantial.

Overall, our experiments demonstrate that the OBC framework offers substantial flex-

ibility in its parametrization. It has the potential to generate responses whose persistence

resembles more that found in the empirical literature and to explain the asymmetries ob-

served in the macroeconomic time series, especially those related to the housing market.

This will be particularly true if a significant part of business cycle fluctuations is driven by

shocks that have significant effects on credit conditions.

5 Local approximations

The natural next step is to run stochastic simulations. To achieve this we apply standard

perturbation methods relying on local approximations of the model around the steady state.

In the DSGE literature the most frequent approach is log-linearization. However, given the

highly nonlinear shape of the penalty function, a simple 1st order approximation would be

clearly counterproductive. It has been recognized in the literature that in such cases one has

to rely on higher order expansions. One thing that remains ex ante unclear is which order

is most appropriate for our purposes.

The answer to such a question is non-trivial. Naturally, higher order expansions allow

to approximate the policy functions in the vicinity of the steady state better than low order

ones. However, this may be no longer true if we move away from the steady state, i.e. if

we want to analyze the effects of large shocks. Also, it is a well-known fact that non-linear

expansions can imply spurious explosive dynamics (Kim et al., 2008).

The literature suggests that the choice of the optimal perturbation order can be model-

specific. Lombardo (2010) demonstrates for a simple stochastic neoclassical growth model

that increasing the order of approximation usually helps to stabilize the model, i.e. spurious
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explosiveness becomes less of an issue. Den Haan and De Wind (2012) analyze a simple

model with a non-negativity constraint approximated by a penalty function and document

that the instability problem gets worse when moving from 2nd to 3rd order perturbation,

while higher order approximations are stable but generate large and odd oscillations.

Needless to say, while dealing with larger models, one also needs to take into account

the computing time necessary to derive higher order expansions. In our case, already the

5th order approximation is prohibitively time and memory consuming. Therefore, in what

follows we present our findings on the workings of the 2nd, 3rd and 4th order perturbations

to our model.

5.1 2nd order approximation

We begin our investigation with the second order perturbation. It should be mentioned

that approximation of this order has been previously applied in the literature to solve and

simulate models with occasionally binding credit constraints in the form of penalty functions.

Mendicino (2012) considers a real model á la Kiyotaki and Moore (1997) and uses the 2nd

order approximation to analyze the response to a moderate positive productivity shock,

finding very little difference between the OBC and EBC variants. We have demonstrated

that this result crucially depends on the shock size and sign, as well as on penalty function

parametrization. Abo-Zaid (2012) uses a New Keynesian model with collateral constraint

on hiring labor to investigate the optimal level of inflation, documenting skewness in the

impulse responses. We will show below that some of this finding can actually be spurious.

We first concentrate on relatively large LTV shocks (i.e. 3%), since, as discussed in the

previous section, they are capable of generating relatively high asymmetry. The impulse re-

sponses in the deterministic environment are presented in Figure 6. For comparative reasons,

we also show the “true” IRFs from the non-approximated model. The figure also plots the

analogous reactions for higher order approximations, which will be discussed later. Focusing

on the 2nd order perturbation, its comparison to the non-approximated solution clearly shows

a shortcoming of the former. In particular, the penalty function derivative Ψl,t increases in

reaction to both positive and negative shocks, while ideally it should show no response for

an increase in the LTV ratio. As a result, for several variables the impulse responses differ

substantially from the non-approximated solution, and even generate spurious asymmetry.
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For instance, according to the 2nd order perturbation and unlike the ”truth”, loans decline

in response to both expansionary and contractionary LTV shocks.

To understand why this happens it is useful to investigate the shape of Ψl,t under the 2nd

order perturbation. To this end, we run a stochastic simulation by drawing 1000 shocks to

LTV. Leaving for a moment stability problems aside, we present in Figure 7 the scatterplot

of the penalty function slope Ψl,t against the gap between the repayment value of loans and

the expected value of accepted collateral, i.e. the argument of the penalty function Γt. The

reason for the deviations from the deterministic solution becomes evident - the approximated

function is almost symmetric.

Let us now return to the problem of stability of stochastic simulations. As described

by Den Haan and De Wind (2012), approximations of exponential penalty functions can

lead to instabilities as they generate an additional fixed point, which, if close enough to the

model’s steady state, can destabilize stochastic simulations even for relatively small shocks.

Our simulations based on the 2nd order perturbation suffer exactly from this problem. The

reason is the left arm of Ψl,t, where the positive slope of Ψt generates artificial incentives for

impatient households to decrease their debt if it is sufficiently far from the constraint.

The literature has suggested two ways of dealing with such spurious unstable dynamics.

One option is to apply the “pruning” procedure advocated by Kim et al. (2008). However,

this algorithm turned out to be doing a poor job in approximating the shape of the penalty

function in our model. This can be seen in Figure 8, which shows that the plot of Ψl,t

against Γt obtained using “pruning” is very fuzzy.8 An alternative option is to follow Aruoba

et al. (2006) and just eliminate explosive draws. In our case, this approach was delivering

a much clearer picture of the shape of the penalty function, and so was applied both to the

simulation presented above and to higher order approximations.9

Unfortunately, for larger shocks to LTV or for realistic compositions of various shocks,

simulations tend to explode too frequently. In particular, for a mixture of LTV, productivity

and monetary policy shocks with standard deviations as given in Table 3, our procedure

8See Den Haan and De Wind (2012) for a detailed explanation of why pruned perturbations can deliver
a poor fit even to standard polynomials.

9To be precise, for each new draw of shocks, we check whether the path of ΨL converges to the stochastic
steady state over the next 50 periods, assuming no further shocks occur. If this condition is not fulfilled, we
draw new shocks and repeat the procedure.
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discards more than 10% of draws. Moreover, for both discarding and pruning, the plot of

Ψl,t is so fuzzy that it cannot be treated as an acceptable approximation of the penalty

function.

5.2 3rd order approximation

Given the failures documented above, we move on to the 3rd order approximation. This

option looks promising given the deterministic impulse responses presented in Figure 6.

For most variables, the responses are quite close to those obtained from the deterministic

solution, even though the initial drop in the penalty function slope in reaction to LTV easing

is clearly exaggerated.

We next turn to stochastic simulations. Again, we draw 1000 shocks to LTV and present

the scatterplot of Ψl,t (Figure 9). As becomes evident, this time the approximated shape

of the penalty function derivative suffers from another weakness: it becomes negative for

sufficiently low values of Γt. In other words, at low levels of leverage, the approximated slope

of the penalty function again generates artificial incentives: it punishes impatient households

for reducing their debt. Moreover, it is clear from Figure 9 that such episodes occur relatively

frequently and hence cannot be ignored.

This problem becomes even more pronounced if we add the remaining two shocks to

the model. As can be seen in Figure 10, now the left negative arm of the penalty function

dominates the right one. Also, the image of the penalty function is no longer sharp, especially

for low leverage. On the positive side, and in contrast to the 2nd order approximation, the

negative slope of the penalty function makes the simulations more stable for low levels of

debt as now impatient households are encouraged to increase it once it becomes sufficiently

small. As a result, stochastic simulations with the 3rd order perturbation explode very rarely.

It has to be borne in mind, however, that this stability is just a nice byproduct of twisted

incentives.

5.3 4th order approximation

Finally, we turn to the 4th order approximation. In this case, the deterministic impulse

responses to large LTV shocks (Figure 6) virtually coincide with those obtained with the
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non-approximated model. Again, we next run stochastic simulations, obtained as before, i.e.

using 1000 draws for innovations in LTV. At first glance, the 4th order perturbation seems

to be a clear improvement. The shape of Ψl,t presented in Figure 11 looks very promising as

it displays a clear asymmetry and is nearly flat for low values of Γt. Unfortunately, a deeper

investigation reveals substantial shortcomings of this approximation. First, larger standard

deviation of LTV shocks (1%) move the left tail of the penalty function slope into regions

where it becomes increasing in lower values of Γt. Second, and more worrying, if we add

other shocks to the model (productivity or monetary), the model becomes highly unstable

for reasons discussed while presenting the 2nd order approximation and related to an addi-

tional fixed point created by the left arm of Ψl,t . As a result, running stochastic simulations

requires discarding a significant (over 15%) proportion of draws. Also, the image of the

penalty function (not shown) is even more fuzzy than that for the 3rd order approximation.

All in all, we have to report discontent with the feasible local approximations. The

three perturbation orders we analyzed above suffer from several critical problems, related to

the shape of the approximated penalty function derivative as well as from instabilities that

prevent running simulations for realistic volatility of shocks. It has to be stressed that a

further increase in the order of approximation not only does not guarantee success, but for

models of reasonable size also becomes prohibitively expensive in terms of computing time.

6 Robustness checks

In order to confirm the robustness of our findings we conduct two important experiments.

In the first one, we use our baseline model, but modify the functional form of the penalty

function. In the second we retain the exponential penalty function but apply it to a somewhat

different model. Given the multiplicity of these additional results, we do not replicate all the

figures presented for our baseline variant, and confine ourselves to showing the main results

and describing the findings.

Regarding the first experiment, we check whether using an alternative penalty function

to (20) affects our results. Given its economic meaning, we are looking for a similarly shaped

function, i.e. an increasing and convex one, relatively flat for low values of Γt and increasing
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sharply once Γt becomes close to zero. Our particular choice is inspired by Dewachter and

Wouters (2014) who employ an inversed third order penalty function to model an equity

constraint of financial intermediaries. Adjusting this concept to our needs, we substitute

(20) with:

Ψt = − η

Γ3
t

(23)

This function has the familiar hyperbolic shape with asymptotes for Γt → 0 and Γt →

−∞. In order to make our experiment comparable to the baseline, we calibrate η so as to

match the same steady state LTV ratio of 74.2%. Our experiments concentrate on stochastic

simulations since this is the area where the exponential penalty function clearly failed. On

Figures 12 - 14 we present the results of stochastic simulations based only on LTV shocks

(with standard deviation set to 0.0045 as in our baseline model). Two conclusions stand out.

First, the shapes of Ψl,t are similar to those shown on Figures 7, 9 and 11 plotted from our

baseline model. The only exception is the one obtained for the second order approximation as

it now does not have a left arm. However, to generate this chart more than 50% of draws had

to be discarded due to instability and these were almost exclusively those that would make

up the missing left arm. Overall, this robustness check suggests that what really matters is

not the exact functional form of the penalty function, but rather the order of approximation

and the respective polynomial that is used to approximate the function. As a result, the

model suffers from similar problems as our baseline. Second, when all shocks are included

the simulation results (not shown) are even more fuzzy and the number of rejected draws

larger than in our baseline model.

In the second experiment we augment our baseline model for the presence of banks and

place a penalty function in this area. Following Gerali et al. (2010), we introduce a simple

model of banking with a capital requirement restricting the quantity of loans. In this model

there are two types of banks: monopolistically competitive retail banks that provide loans

to households subject to a collateral constraint, and perfectly competitive wholesale banks

that obtain deposits from households and provide loans to retail banks.

Our original model is modified in the following way. Households face a binding collateral
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constraint, i.e. (7) holds with equality. Retail banks obtain funds from wholesale banks at

the rate RLb,t (not Rt as before), i.e. (15) has the following form

RL,t = µLRLb,t (24)

where µL is a markup resulting from imperfect competition in the retail banking sector.

Wholesale banks accumulate bank capital Kb,t from proceeds Jb,t (originating in both whole-

sale and retail banks, as wholesale banks own retail banks)

Kb,t = (1− δb)Kb,t−1 + ωbJb,t (25)

where δb denotes the depreciation rate of the bank capital (which captures the use of resources

in the banking activity). Additionally, a fraction 1− ωb of Jb,t is paid to patient households

as dividends.

Wholesale banks take deposits Dt at the policy rate Rt and use them (together with bank

capital) to finance loans Lb,t extended to retail banks at the rate RLb,t

Lb,t = Dt +Kb,t (26)

In this activity, they have to meet the capital requirement constraint, which in real terms

takes the form

vtlb,t ≤ kb,t

where vt denotes the minmum capital requirement (bank capital to loans) ratio, lb,t ≡ Lb,t/Pt

and kb,t ≡ Kb,t/Pt. We introduce this captial requirement via the penalty fuction

ψt =
ι1
ι0

exp[−ι0(kb,t − νtlb,t)] (27)

that affects the flow of funds in the banking sector so that Jb,t accumulates according to the

following equation

Jb,t+1 = RLb,tLb,t −Rt(Lb,t −Kb,t)− Ptψt +RL,tLt −RLb,tLt
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The problem of the wholsale bank gives rise to the following first order contition

RLb,t = Rt − ψlb,t(lb,t, kb,t) (28)

where ψlb,t is the derivative of ψt with respect to lb,t

ψlb,t = νtι1 exp[−ι0(kb,t − νtlb,t)]

and can be interpreted as the spread between the policy rate Rt and the rate RLb,t at which

the wholesale bank lends to retail banks. This spread is hence determined by the slope of

the penalty function that banks have to pay for violating the capital requirement.

As in the first experiment, we focus our attention on stochastic simulations. Our findings

are similar to those described earlier - the shape of the penalty function may be lost in

perturbations.10 Figures 15-17 present the 2nd, 3rd and 4th order approximation to the slope

of the penalty function ψlb,t. Clearly the model suffers from similar problems as before. The

second and fourth order approximations generate a U-shaped penalty function. Under the

third order approximation the slope can become deeply negative, generating wrong incentives

to banks (i.e. penalizing them for increasing their capital holdings).

7 Conclusions

In this paper we investigate whether the introduction of collateral constraints in the form of a

penalty function can be used as a practical shortcut for generating plausible dynamics related

to financial shocks. Our question arises from two observations. First, financial shocks affect

the economy in an asymmetric and non-linear way. In particular, expansionary shocks tend

to have less impact than contractionary shocks. Moreover, negative effects of financial shocks

are much more pronounced and long-lasting during episodes of high financial stress than in

10Recall that for our baseline model LTV shocks were sufficient to demonstrate the properties of the
approximated penalty function, while a full composition of shocks made the model highly unstable. When
the penalty function is placed in the banking sector the model is generally more stable and solely applying
LTV shocks is not sufficient to demonstrate the properties of the penalty function. For this reason, we
move directly to using the complete structure of shocks (i.e. productivity, monetary and LTV) calibrated as
described in Table 3.
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normal times. Second, the emerging literature on occasionally binding constraints, while

addressing these issues, tends to rely on inequality constraints that call for global solutions.

These are time consuming for small models and impossible to apply for larger models used

currently for policy analysis at central banks and academia. The penalty function approach

could thus potentially constitute a useful shortcut, allowing for the application of local

approximation methods, and hence incorporating nonlinearities and asymmetries in medium

and large scale models.

Having constructed a dynamic stochastic general equilibrium model with standard real

and nominal rigidities and credit constraints in form of a penalty function, we analyze the

model’s deterministic properties. We find that the model is able to produce reactions in line

with the stylized facts described above. In particular, it generates moderate and symmetric

reactions to small shocks. However, once the shock magnitude increases, the impulse re-

sponses of several variables tend to become asymmetric, with more pronounced reactions to

shocks that tighten the constraint.

We then move to analyzing local approximations and find that these allow to generate

similar reactions as in the deterministic solution. However, this finding is valid for orders of

approximations higher than two. The second order approximation to the penalty function

tends to generate spurious asymmetry and should, in our view, be avoided.

Finally, we attempt to investigate the stochastic properties of the locally approximated

models. Here, our findings are less optimistic. First, even for small shocks, the second and

third order approximations to the penalty function assume highly undesirable shapes for

low levels of indebtness. The former implies ever increasing rewards from reducing debt,

the latter artificially punishes the agents for deleveraging. In this respect, the fourth order

approximation cuts off relatively well. However, in a richer stochastic environment even this

approximation suffers from high instabilities that, to our knowledge, cannot be removed in

a satisfactory way.

Our robustness checks confirm and extend these findings. For penalty functions it is

ultimately the order of approximation that determines their shape, not only the original

functional form. As a result, the model can often generate unwelcome behaviour, including

instabilities. Even if the simulations are stable, one should carefully check whether simula-
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tions do not enter regions where the approximated penalty function is inconsistent with its

assumed functional form. We show that for models with credit constraints this is a frequent

case.

We conclude that, the penalty function approach is an attractive way of introducing

financial frictions into non-stochastic models. Unfortunately, it fails to fulfill our expectations

in a realistic stochastic setting, making its fully fledged application in business cycle and

macroprudential policy analysis problematic.
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Tables and figures

Table 1: Skewness of main housing market variables

Variable Skewness
Real house price inflation -1.17**

Housing investment -0.48**
Housing stock -0.50**

Real mortgage loans -0.05
Real mortgage loans (growth rate) -0.30*

Note: *,** denote significance at the 5% and 1% level, respectively. Real house prices reflect the CPI deflated Case-Schiller

index (Source: Standard&Poors; 1q1987 - 3q2011). Housing investment is defined as real private residential investment

(Source: BEA; 1q1950-4q2011). Housing stock stands for real private residential fixed assets (Source: BEA; 1950-2010). Real

mortgage loans are CPI deflated home mortgages of households and non-profit organizations (Source: Board of Governors;

1q1952-3q2011). All variables are detrended with the Hodrick-Prescott filter.

Table 2: The steady state ratios

Steady state ratio Value
Housing investment share in GDP 5.5%
Capital investment share in GDP 16.9%
Mortgage loans to annual GDP 57%

Hours 0.32
Spread (annualized) 1.5pp

LTV 0.75
Note: housing investment is defined as private residential investment (Source: BEA; 1q1950-4q2011). Capital investment

reflects private and government nonresidential investment (Source: BEA; 1q1950-4q2011). Mortgage loans are for households

and non-profit organizations (Source: Board of Governors; 1q1952-3q2011). Spread is calculated as the annualized difference

between 30-year mortgage rates and yields on 30-year government bonds (Source: FRED; 1q1977-4q2011). LTV is the loan to

price ratio for mortgage loans (Source: Federal Housing Finance Agency; 1963-2010). GDP is defined as a sum of private

consumption, residential investment and nonresidential investment.
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Table 3: Calibrated parameters

Parameter Value Description
βP 0.99 Discount factor, patient HHs
βI 0.985 Discount factor, impatient HHs
δk 0.02 Physical capital depreciation rate
δχ 0.00875 Housing stock depreciation rate
ωI 0.7 Share of impatient HHs
Aχ 1.35 Weight on housing in utility function
An 400 Weight on labor in utility function
σc 2 Inverse of intertemporal elasticity of substitution in consumption
σχ 2 Inverse of intertemporal elasticity of substitution in housing
σn 2 Inverse of Frisch elasticity of labor supply
ξc 0.7 Degree of external habit formation in consumption
ξχ 0.7 Degree of external habit formation in housing
θw 0.75 Calvo probability for wages
ζw 0.5 Indexation parameter for wages
µw 1.2 Labor markup

µn/(µn − 1) 6 Elasticity of substitution between labor of patient and impatient HHs

µ 1.2 Product markup
θ 0.75 Calvo probability for prices
ζ 0.5 Indexation parameter for prices
α 0.31 Product elasticity with respect to capital
κk 5 Capital investment adjustment cost
κχ 5 Housing investment adjustment cost

µL 1.0038 Loan markup
mχ 0.75 Steady state LTV
η 50 Curvature of penalty function
π 1.005 Steady state inflation
γR 0.9 Interest rate smoothing
γπ 1.5 Response to inflation
γy 0.5 Response to GDP

ρz 0.95 Productivity shock - persistence
σz 0.005 Productivity shock - standard deviation
ρm 0.975 LTV shock -persistence
σm 0.0045 LTV shock - standard deviation
σR 0.001 Monetary policy shock - standard deviation
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Figure 1: Responses to a standard LTV tightening: the role of impatient households’ discount
factor
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Note: Solid lines - βI = 0.98622, which implies the difference between its inverse and the steady state real interest on loans of

1 bp (annualized); dashed lines - βI = 0.985 (baseline calibration, 50 bp); dotted lines - βI = 0.98382 (100 bp).
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Figure 2: Responses to a standard negative LTV shock: the role of penalty function curvature
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Note: Solid lines - η = 50 (baseline calibration); dashed lines - η = 100; dotted lines - η = 200; circles - EBC (η →∞ ).
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Figure 3: Responses to positive and negative LTV shocks: small vs. large shocks
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Note: Black solid lines - standard positive LTV shock (0.45%); black dashed lines - big positive LTV shock (3%); gray solid

lines - standard negative LTV shock (-0.45%); gray dashed lines - big negative LTV shock (-3%).
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Figure 4: Responses to big positive and negative productivity shocks
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Note: Black lines - big positive productivity shock (1.5%, i.e three standard deviations); gray lines - big negative productivity

shock (-1.5%).
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Figure 5: Responses to big positive and negative monetary shocks
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Note: Black lines - big positive monetary shock (2% annualized, i.e. five standard deviations); gray lines - big negative

monetary shock (-2% annualized).
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Figure 6: Impulse responses for the non-approximated and approximated models - big LTV
shocks
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Note: Black lines - big positive LTV shock (3%); gray lines - big negative LTV shock (-3%); solid lines - non-approximated

solution; dashed lines - 2nd order perturbation; dotted lines - 3rd order perturbation; circles - 4th order perturbation.
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Figure 7: Penalty function derivative - 2nd order approximation
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Note: The chart is based on stochastic simulations with LTV shocks.

Figure 8: Penalty function derivative under pruning - 2nd order approximation
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Note: The chart is based on stochastic simulations with LTV shocks.
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Figure 9: Penalty function derivative - 3rd order approximation
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Note: The chart is based on stochastic simulations with LTV shocks.

Figure 10: Penalty function derivative - 3rd order approximation (all shocks)
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Note: The chart is based on stochastic simulations with LTV, productivity and monetary shocks.
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Figure 11: Penalty function derivative - 4th order approximation
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Note: The chart is based on stochastic simulations with LTV shocks.

Figure 12: Hyperbolic penalty function derivative - 2nd order approximation
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Note: The chart is based on stochastic simulations with LTV shocks.
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Figure 13: Hyperbolic penalty function derivative - 3rd order approximation
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Note: The chart is based on stochastic simulations with LTV shocks.

Figure 14: Hyperbolic penalty function derivative - 4th order approximation
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Note: The chart is based on stochastic simulations with LTV shocks.
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Figure 15: Penalty function in bank capital requirement - 2nd order approximation
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Note: The chart is based on stochastic simulations with all shocks.

Figure 16: Penalty function in bank capital requirement - 3rd order approximation
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Note: The chart is based on stochastic simulations with all shocks.
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Figure 17: Penalty function in bank capital requirement - 4th order approximation
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Note: The chart is based on stochastic simulations with all shocks.
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