Immigration, Enterprises, and Employment in the European Union

Onur A. Koska^{*} Selim Çağatay[†] Murat Genç[‡] Perihan Ö. Saygin[§]

October 1, 2012

Abstract

We study the effects of ethnic diversity, measured by the share of immigrants in the total population in the EU member countries, on the number of establishments and employment in the EU. We distinguish between different industries and between different groups of source (migrant-sending) countries; i.e., Eastern European Countries (EECs) and Mediterranean Countries (MPCs). We use a panel data that covers the period 1988-2010, and find that migration from MPCs to the EU has a positive impact on both the number of enterprises and employment, especially in light manufacturing industries. Also migration from MPCs to the EU positively affects employment in construction and heavy manufacturing industries. Similarly, migration from EECs to the EU positively affects employment, especially in food and beverages industries.

Keywords: Migration; Enterprises; Employment. **JEL Classification:** J2; J61; R23.

*Corresponding author, Department of Economics, University of Tübingen, Mohlstr. 36 (V4), D-72074 Tübingen, Germany. Tel: +(49) 7071 29-78195 (office), or +(49) 162 730-9648 (mobile). Fax: +(49) 7071 29-5071. Email: onur.koska@uni-tuebingen.de.

[†]Department of Economics and Centre for Economics Research on Mediterranean Countries, Akdeniz University, Turkey. Email: selimcagatay@yahoo.com.

[‡]University of Otago, PO Box 56, Dunedin, New Zealand, murat.genc@otago.ac.nz.

[§]Department of Economics, University of Mannheim, Germany. Email: peri.saygin@gmail.com.

1 Introduction

Immigration is at the forefront of the European Union's (EU) attention as it is believed it significantly affects economic outcomes for natives through various channels. In this paper, we study the effects of ethnic diversity, measured by the share of immigrants in the total population in the EU member countries, on industry-level employment, and on the variety of products that both natives and immigrants are provided with in these countries. In particular, we are interested in finding out about whether and how the composition of businesses in the EU changes with the influx of immigrants. For example, do we see a change at the *product* extensive margin, such that new products are made available in the market, especially to cater to immigrants' demand for some ethnic/diversified goods, or at the *product* intensive margin such that the share of establishments providing more standardized products increase?

The empirical motivation of our paper is obvious as statistical evidence shows that the immigrant population in the EU is significantly large. At the end of the 1990s, 3.5 per cent of the EU's population (18 million) was of immigrant origin; see Aubarell and Aragall (2005). In about a decade, this number has almost doubled. According to the News Release by EUROSTAT (2010) — the statistical office of the EU — at the end of 2008, there were 31.9 million foreign citizens living in the EU, of which 20 million were citizens of countries outside the EU. The share of the EU population that is foreign born is currently estimated at around 10 per cent; see EMPL (2011). Not surprisingly, the most populated five EU Member States (Germany, France, Italy, Spain, and the United Kingdom) — comprising approximately two-thirds of the total EU population — have the highest numbers of foreign-born persons, in absolute terms, the total number corresponding to over 75 per cent of the total immigrant population in the EU; see EUROSTAT (2011a). As is discussed in detail, in the following section, not only may immigrants bring in their knowledge of producing some diversified goods, or make trading such goods possible/less costly, but also they may create significant demand for such goods. So we may eventually see some immigration-triggered changes in consumption and production patterns, especially in countries receiving sufficiently large numbers of foreign-born persons.

In general, people move across countries for several reasons. In particular, employmentrelated reasons are reported as the main motive behind immigration, although migrants tend to have low levels of income, and/or are exposed to a higher risk of unemployment ¹, or are likely to be employed in jobs below their educational qualifications. We shall note that there are some important factors contributing to immigrants' such employment experiences, such as the non-recognition of migrants' qualifications and skills which are earned abroad, language barriers, or discrimination, etc.; see EUROSTAT (2011a) and EMPL (2011) for details. These factors may also explain, to some extent, the sectoral distribution of immigrants in the EU Member States.

According to the EU-LFS 2009 data reported by EMPL (2011), immigrants are, generally, under-represented in occupations (i) that require proficiency in the host country language such as office works as they cannot compete with a larger group of native speakers, and (ii) that require high skills/education as in extra-territorial organizations, and education and health sectors, etc. Also they are not well represented in manufacturing, and wholesale and retail trade industries, although there is considerable heterogeneity across countries. On the contrary, they are over-represented in occupations (i) whose demand for skill is sufficiently low such as service sector industries (e.g., hotel and food services, and administrative and support service activities, etc.), and (ii) where the employer is the household (i.e., the household sector that consists in domestic helpers, cleaners and launderers, and personal care workers). Also they are well represented in the construction sector, although as in manufacturing, and wholesale and retail trade industries, the share of immigrant employment in the construction sector shows significant heterogeneity across countries. 2

In this study, we scrutinize mainly the demand-related impact of the influx of immigrants on the variety of consumption goods available in the host countries. Hence the retail industry, which involves activities that are related to selling goods and services directly to consumers, is given a special emphasis. According to the EU-27, 2008-data, published by Eurostat (2011b), the retail industry is a subgroup of the distributive trades sector, which involves mostly activities that are related to the purchase and resale of goods in the same condition. The distributive trades sector includes 6.1 million enterprises — nearly 30 per cent of the total number of enterprises in the EU non-financial business economy

¹Irrespective of the level of education, the unemployment rates of foreign-born persons were systematically higher than for native-born persons, and especially in 2008, this was true in almost all Member States for which data were available (EUROSTAT 2011a: 41).

 $^{^{2}}$ For a detailed analysis of the sectoral distribution of the share of immigrant employment, see EMPL (2011).

— a large number of which is micro, small, or medium-sized enterprises, ³ and provides employment for almost a quarter of the EU non-financial business economy workforce (32.8 million persons), ⁴ so it is the largest sector in terms of the number of enterprises, and is almost as large as the manufacturing industry in terms of the number of persons employed. ⁵ Moreover, the share of the retail industry in total distributive trades is the largest both in terms of the number of enterprises (60 per cent) and of persons employed (55 per cent); see Eurostat statistics, *European Business* (NACE divisions).

We can distinguish between different types of enterprises. In general, establishments that are affiliated with a large firm, which consists of several stores (e.g., chain stores), (i) have complex distribution and inventory control systems, (ii) benefit significantly from scale and scope economies, and (iii) tend to provide more standardized products and offer lower prices. Small, owner-operated/stand-alone stores, however, tend to offer more customized products, and charge higher prices; see Dinlersoz (2004) for details. A positive relationship between the number of small, owner-operated/stand-alone stores and the share of immigrant population, hence, can be associated with the change of the composition of businesses at the product extensive margin, and so with increased diversity of consumption choices. By the same token, if immigrants have higher price elasticities of demand, or if they tend to consume products offered by chain stores, we may well observe a shift of the composition of businesses in the opposite direction.

2 Review of the related literature

There is an extensive literature studying potential impacts of immigration in different contexts. One strand of this literature, for example, focuses on the labor-market consequences of immigration, such as whether immigration leads to higher unemployment among natives, especially by crowding out native workers, and whether immigration decreases wages/earnings of native workers, etc. Although the vast majority of research has mainly analyzed the United States (US) ⁶, there is a growing and recent literature

³Micro, small, or medium-sized enterprises (SMEs), which comprise 99.8 per cent of all active enterprises in the EU non-financial business economy are mainly concentrated in the distributive trades sector.

⁴The number of persons employed in the non-financial business economy is estimated at about 136.3 million, that is approximately 60 per cent of total employment in the EU.

⁵Manufacturing is the largest sector within the EU non-financial business economy, both in terms of the number of persons employed (33 million) and of value added.

⁶See Hanson (2009) for discussions of this literature.

studying different EU Member States. ⁷ Much of this literature is indirectly related to our study as we particularly focus on the immigration-induced changes in product diversity. It is, however, worth noting that, as far as the EU Member States are concerned, in most cases, immigrants do not crowd out native workers — since they mostly complement natives in the labor market — nor do they have a significant negative impact on native workers' wages/earnings, which may have indirectly affected consumption choices; see Kerr and Kerr (2011), Münz *et al.* (2007), ILO (2010), UNECE (2002), and references therein, for details. To the contrary, migrant workers contribute to job creation in several ways, ranging from entrepreneurship to increasing domestic demand for goods and services (ILO 2010: 60).

Immigrants generally create social networks in the country that they have settled (OECD 2007). Such networks enable immigrants to opt for self-employment, and so to establish micro, small, or even medium-sized enterprises, ^{8, 9} which are mostly found in the catering industry, services, and retail trade. Immigrant entrepreneurs that are active in such sectors often provide goods and services that are different from those provided by native entrepreneurs, implying that they may well contribute to the diversity of consumption choices (EC 2006, EMN 2005, ILO 2010). Immigrants may also play a crucial role in facilitating trade through a number of mechanisms as they are linked to both their home and host countries by networks; see Gaston and Nelson (2011), Globerman (1995), and Head and Ries (1998) for details. As argued by Head and Ries (1998), immigrants may have superior knowledge of market opportunities, and so in the presence of transaction costs, they may act as trade intermediaries, and may reduce costs, especially associated with foreign trade. ¹⁰ Such costs tend to be significantly high, especially when economic,

⁷A survey of the main findings of such studies can be found in UNECE (2002), the United Nations Economic Commision for Europe.

⁸According to the European Commision (EC) publication, EC (2006), in Italy, there are some 168,000 such enterprises. In Belgium, in the Brussels area alone, self-employed persons originating from ethnic minority communities are estimated at around 18,000, while for the Flemish region, the number is estimated at about 10,000. In Germany, in 2003, there were 142,000 self-employed non-EU citizens, and in Netherlands, in 2004, 58,000 ethnic entrepreneurs were recorded (p.17).

⁹Among different motives, *immigrant entrepreneurship* is a way to circumvent unemployment, especially given their difficulties in finding paid-employment via formal routes; see e.g., van Delft *et al.* (2000), Constant *et al.* (2005), EMN (2005), and OECD (2007).

¹⁰This is referred to as the *information bridge hypothesis*, according to which immigrants may have superior knowledge of both the home and host country markets, languages, business practices, laws, and special distribution channels, etc., that may help overcome uncertainty stemming from economic and cultural differences, and differences in political environments across countries. Also immigrants may help reduce economic inefficiencies, which may arise especially due to asymmetric information and incomplete enforcement of contracts; see Dunlevy (2006), and Gaston and Nelson (2011).

cultural, and institutional differences across countries are significant, and when such countries trade specialized and/or differentiated goods. Therefore, immigrants may positively affect trading differentiated goods, which may lead to increased variety of consumption goods in the host country.

There is a sizeable literature on the relationship between immigration and trade. Empirical evidence from this literature, which mainly employs gravity-based estimation techniques, suggests that immigration has indeed a significant positive effect on both exports and imports, and the effect appears to be stronger for imports and for specialized/differentiated goods. ¹¹ This latter finding implies that immigrants may also change the number of varieties of goods available in the host country, especially through their demand/consumption patterns. The idea here is simple. If immigrants have preferences for certain goods produced in their country-of-origin — which may not be available in the country that they immigrate — and if their demand for such goods is sufficiently large which is likely to occur in countries where the share of immigrants in the total population is sufficiently large — then they may lead the host country to import such differentiated goods. ¹² By the same token, immigrants may have a comparative advantage in producing such goods, with which supply may increase. Though a similar effect may stem from any kind of frictions or preferences leading immigrants to increase labor supply in industries producing such differentiated goods.

In this paper, we also study such preference effects of immigrants, but with a different focus. In contrast to the trade literature mentioned above, we want to delineate how the composition of businesses are linked to the share of immigrants in the total population, which is, surprisingly, a far less studied question in the existing literature, and so with which we would like to contribute to the literature. Our paper is closely related to Mazzolari and Neumark (2011) studying the impact of immigration on the diversity of consumption choices. In particular, they try to explain the changes in the number of establishments of different size with the changes in the share of immigrants in the total population. They use establishment-level data for California between 1992 and 2002, and focus on the retail sector and the restaurant sector, the latter of which is given a special emphasis. They find that immigration is associated with fewer stand-alone retails stores,

¹¹See Wagner *et al.* (2002), Peri and Requena-Silvente (2010), and Gaston and Nelson (2011), and references therein, for surveys and discussions of the main findings of this literature.

¹²This preference effect is referred to as the *transplanted home bias* effect as migrants develop tastes before migrating to a country, and as such tastes affect their consumption patterns in the country they immigrate; see White (2007) for discussions of such preference effects.

and a greater number of chains/big-box retailers, which appears to be contradicting with the diversity-enhancing effect of immigration. Although they find a positive relationship between immigration and ethnic diversity in the restaurant sector, which — as they argue — also may stem from comparative advantage of immigrants in the production of ethnic food from their country-of-origin. To the contrary, Olney (2011) argues that the relationship between immigration and the number and size of establishments is mainly driven by firms' relocating their production activities, rather than by immigrants' consumption patterns. He uses a data set that covers 192 U.S. Metropolitan Statistical Areas for the period 1998-2004, and shows that firms respond to immigration both at the extensive margin, which is captured by the net birth rate of establishments, and at the intensive margin, which is captured by the net expansion rate of establishments. According to his results, both the net birth rate and the net expansion rate of establishments increase, especially with low-skilled immigration, the impact of which appears to be much weaker in the non-mobile industries, such as agriculture, mining, and retail trade, than in the mobile industries, such as manufacturing, and finance, professional, management, and administration services. That being said, his data do not allow for calculating immigration by industry, which may have been crucial for an analysis focusing on the production-related effects of immigration in different industries as immigrants are not well represented in those so-called mobile sectors.

Another strand of the literature, to which our paper is indirectly related, looks at how prices change with the influx of immigrants. Lach (2007) employs a store-level price data and shows that the unexpected arrival of a large number of immigrants from the former Soviet Union in Israel, in the 1990s, leads to large and significant reductions in prices. This result may well reflect the demand-side effect of immigration, that is, new consumers (immigrants) have high price elasticity and low search costs, especially vis-á-vis the native population. Given composition effects, we may see the arrival of consumers with different characteristics may offset the demand level changes stemming from the increase in the number of consumers. Bodvarsson *et al.* (2008) analyze the effects of immigration from Cuba to Miami, especially after the Mariel Boatlift of 1980, and find positive demand effects, that is, retail sales per capita increased with the influx of Cuban immigrants. Bodvarsson and Van den Berg's (2009) study, which focuses on Hispanic immigration to Dawson County, Nebraska — a uniquely-segmented economy where immigrants work exclusively in an export sector (the meatpacking industry) but consume locally — suggests that immigration can boost local consumer demand. Similarly, Frattini (2008), focusing on immigration inflows in the UK, between 1995 and 2006, shows that the price of low-value and everyday grocery goods increased in the same period.

Our study differs from the existing studies such that not only it considers the supply-side effects of immigration, but that it treats immigrants as potential consumers of differentiated goods. Also our study is not confined to a particular area in a country, or to a single country. We study the EU Member States, which is also a contribution to the literature that mainly focuses on the US. Moreover, we distinguish between different industries and between different groups of source (migrant-sending) countries; i.e., Eastern European Countries (EECs), and Mediterranean Countries (MPCs). By employing static estimation methods, our study suggests that migration from MPCs to the EU has a positive impact on both the number of enterprises and employment, especially in light manufacturing industries. Migration from MPCs to the EU positively affects employment in construction and heavy manufacturing industries. Similarly, migration from EECs to the EU positively affects employment, especially in food and beverages industries. In the following sections, we introduce our methodology and data, and present our results. The last section provides some concluding remarks.

3 Methodology

The number of establishments equations are of the reduced form, and are derived from Mazzolori and Neumark (2009). Its theoretical roots can be found in Ottaviano and Peri's (2006, 2008) studies, which incorporate consumption variety effects into the study of the economic benefits of immigration. In particular, they employ a general equilibrium model for a small open economy where individuals are differentiated in terms of origin, home-born vs foreign-born, and consume two goods, a homogeneous tradable good and a differentiated, local, non-tradable good. Home-born and foreign-born individuals are assumed to be able to produce different varieties of the non-tradable good. In such a model, the non-tradable good can be thought of as a composite basket of local services whose supply particularly benefits from diversity.

We follow the same approach, and attempt to directly study the relationship between immigration and the composition of products available to consumers. In particular, We scrutinize the effects of immigration on product diversity by looking at the industry-level number of enterprises and industry-level employment. We use the following two equations to estimate the impacts of immigration on the number of enterprises and on employment:

$$enter^{j} = \alpha^{0} + \alpha^{1}(EEC/Pop) + \alpha^{2}(MPC/Pop) + \alpha^{3}(NAV/Pop) + \alpha^{4}(REN) + \varepsilon,$$
$$emp^{i} = \beta^{0} + \beta^{1}(EEC/Pop) + \beta^{2}(MPC/Pop) + \beta^{3}(NAV/Pop) + \varepsilon,$$

where the variable $enter^{j}$ and emp^{i} are the number of enterprises and employment in industry j and i, respectively, and EEC/Pop, MPC/Pop and NAV/Pop are the share of immigrants from EECs and from MPCs, and the share of native population in total population, respectively, and REN is the total renumeration paid to employees. These equations are also estimated by using the changing rates of the variables.

We use a panel-based approach so as to deal with unobserved country-pair heterogeneity, because conventional cross-section estimation techniques fail to model such heterogeneity, and so may yield biased estimates; see Cheng and Wall (2005) and Carrre (2006) for details. Cross-section specifications also fail to properly account for possible omitted variables bias; see De Benedictis and Taglioni (2011) for discussions. The two commonly used panel estimation techniques are the fixed-effects (FE) and the random-effects (RE) estimation methods. The main difference between the two methods is that the FE method allows country-pair individual effects to be correlated with regressors, whereas the RE method assumes that individual effects are uncorrelated with all regressors. As the FE method transforms data into deviations from individual means, ignoring the betweengroups variance, it cannot provide estimates for the coefficients of time-invariant regressors such as distance. Although this is a disadvantage, an FE estimator is unbiased and consistent in the presence of correlation between individual effects and regressors, whereas the RE estimator is not. The common practice to choose which model to use is to employ a Hausman specification test, as suggested by Hausman (1978). We follow this strategy such that we first employ both the FE and RE models when estimating the effects of immigration on product diversity, then we employ a Hausman test.

4 Data and Results

Our migration data covers the period 1988-2010, and provides information on the number of immigrants in the EU. We distinguish between immigrants in terms their country of birth. So we have immigrants whose home country either belongs to the group of MPCs or to that of EECs. Also we distinguish between immigrants in terms of gender and age. That said, the migration variable used in the econometric estimation includes the total number of immigrants. We extract our data mainly from two data sources, <u>http://ec.europa.eu/eurostat</u> from which we collect our migration data, and <u>the OECDs Structural and Demographic Business Statistics</u> from which we collect the enterprises and employment data. We shall note that the latter data source provides information at a very detailed sectoral level, especially on turnover, value-added, production, operating surplus, employment, labor costs and investment. The breakdown by industrial sector, including services, is supplemented by a further breakdown into size classes. The database also includes business demography statistics, such as enterprise birth, death and survival rates, as well as the number of high-growth enterprises and gazelles, especially from 1995 onwards.

We look at the relationship between migration and product diversity, both in terms of employment and the number of enterprises. We consider seven industries: (1) mining and quarrying, (2) food products, beverages and tobacco, (3) light manufacturing, (4) heavy manufacturing, (5) electricity, gas and water supply, (6) construction, (7) wholesale and retail trade, hotels and restaurants. Dependent variables (employment and the number of enterprises) are specified first as levels, then as the rates of change, and independent variables are adjusted accordingly. The FE and the RE models are estimated, and then a Hausman specification test is performed. Therefore, eight models for each industry are estimated and, in total, 56 econometric estimations are carried out. We shall note that, in almost all cases, the RE models are rejected. So we mainly focus on the results of the FE models, although, in some cases, we present also the results of the RE models.

Table 1 summarizes our findings from the estimation of the industry-level number of enterprises. In Table 1, the signs, (+) and (-), mean *positive significant* and *negative significant*, respectively. As for the variables, Y1 stands for the number of enterprises, and X1, X2, and X3 stand for the share of immigrants from EECs and from MPCs, and the share of native population in total population, respectively. X4 is the total renumeration paid to employees. The model is also re-estimated by substituting X5, the total population including migrants, for X3, and the results are included in the lower section of the table. As is given by Table 1, immigrants from MPCs have a positive impact on the number of enterprises, especially in light manufacturing industries. That said, immigrants from EECs have a negative impact on the number of enterprises, especially in electricity, gas and water supply industries. As for the impact of total renumeration paid to employees on the number of enterprises, our results from the model in which X3 is considered suggest

			Εi	Fixed effect	ffect				ä	andom	Random effect		
			>	Variables	es					Variables	bles		
		Dep. Var.		Re	Regressors	rs		Dep. Var.		ж	Regressors	ors	
	Industries		Х1	X2	ΣЗ	X4			X1	X2	X3	X4	
	1 Mining and Quarrying	Υ1						Υ1					
	2 Food Products, Beverages and Tobacco	Υ						Y1					
	3 Light Manufacturing	τ,		+				Y1		+			
4	4 Heavy Manufacturing	Υ						Y1				+	
_,	5 Electricity, Gas and Water Supply	۲۱				+		Y1				+	
	6 Construction	Υ1				+		Y1				+	
	7 W/sale, Retail Trade, Hotels and Restaurants	۲1				+		Υ1				+	
			Εİ	Fixed effect	ffect				ä	andom	Random effect		
			>	Variables	es					Variables	bles		
		Dep. Var.		Re	Regressors	rs		Dep. Var.		Я	Regressors	ors	
	Industries		Х1	X2		X4	Х5		X1	X2		X4	X5
	1 Mining and Quarrying	Υ1						Υ1					+
	2 Food Products, Beverages and Tobacco	Υ						Y1					
	3 Light Manufacturing	Υ1		+				Υ1		+			+
	4 Heavy Manufacturing	Υ1						Y1		+			+
_,	5 Electricity, Gas and Water Supply	Υ1					+	Υ1					
	6 Construction	Y1				+		Υ1					
	7 W/sale, Retail Trade, Hotels and Restaurants	Y1				+		Υ1					
							1						

Table 1: Results – the number of enterprises

		Fixed	Fixed effect				Rand	Random effect	fect	
		Vari	Variables				Va	Variables	s	
	Dep. Var.		Regressors	ssors		Dep. Var.		Regr	Regressors	
Industries		X10	X11	X12			X10	X11	X12	
1 Mining and Quarrying	٤٨					٤٨				
2 Food Products, Beverages and Tobacco	Y3					Y3				
3 Light Manufacturing	Y3					Υ3				
4 Heavy Manufacturing	Y3		+			Y3		+		
5 Electricity, Gas and Water Supply	Y3					Υ3				
6 Construction	Y3					Y3				
7 W/sale, Retail Trade, Hotels and Restaurants	Y3					Y3				
		Fixed	Fixed effect				Rand	Random effect	fect	
		Vari	Variables				Va	Variables	s	
	Dep. Var.		Regressors	ssors		Dep. Var.		Regr	Regressors	
Industries		X10	X11		X13		X10	X11		X13
1 Mining and Quarrying	٤٨					٤٨				
2 Food Products, Beverages and Tobacco	Y3	+				Y3				
3 Light Manufacturing	Y3		+			Y3				
4 Heavy Manufacturing	Y3		+			Y3				
5 Electricity, Gas and Water Supply	Y3					Y3				
6 Construction	Y3			+		Y3				
7 W/sale, Retail Trade, Hotels and Restaurants	Y3				+	Y3	+	+		+

Table 2: Results – employment

			Fixed	Fixed effect	Ŧ			Rand	Random effect	ect	
			Vari	Variables				Va	Variables		
		Dep. Var.		Regre	Regressors		Dep. Var.		Regr	Regressors	
	Industries		X6	Χ7	X8			9X	X7	X8	
	1 Mining and Quarrying	Y2					Y2				
	2 Food Products, Beverages and Tobacco	Y2					Y2				
(0)	3 Light Manufacturing	Y2					Y2				
4	4 Heavy Manufacturing	Y2					Y2				
-	5 Electricity, Gas and Water Supply	Y2					Y2			+	
9	6 Construction	Y2		+			Y2		+		
	7 W/sale, Retail Trade, Hotels and Restaurants	Y2					Y2				
			Fixed	Fixed effect	Ŧ			Rand	Random effect	ect	
			Vari	Variables				Va	Variables		
		Dep. Var.		Re gre ssors	SSOLS		Dep. Var.		Regr	Regressors	
	Industries		X6	X7		6X		9X	X7		6X
`	1 Mining and Quarrying	Y2					Υ2				
.,	2 Food Products, Beverages and Tobacco	Y2					Y2				
0	3 Light Manufacturing	Y2					Y2				
4	4 Heavy Manufacturing	Y2					Y2				
	5 Electricity, Gas and Water Supply	Y2					Y2			+	
9	6 Construction	Y2					Y2				
~	7 W/sale, Retail Trade, Hotels and Restaurants	Y2					Y2				

Table 3: Results – the rates of change in employment

a positive relationship, especially in construction, wholesale and retail trade, hotels and restaurants, and electricity, gas and water supply industries. Also, in the model in which the total population including migrants is substituted for the share of native people in total population we find that the impact of the total population including migrants on the number of enterprises is negative in food products, beverages and tobacco industries, and is positive in electricity, gas and water supply industries.

We summarize our estimation results for the impact of immigration on industry-level employment in Table 2. As before, in Table 2, the signs, (+) and (-), refer to as *positive significant* and *negative significant*, respectively. As for the variables, Y3 stands for employment, and X10, X11, and X12 stand for the share of immigrants from EECs and from MPCs, and the share of native population in total population, respectively. We also re-estimate the model by substituting X13, the total population including migrants, for X12, and present the results in the lower section of the table. As is given by Table 2, immigrants from MPCs have a positive impact on employment in both light and heavy manufacturing industries. That said, immigrants from EECs have a positive impact on employment in food products, beverages and tobacco industries. Similarly, an increase in total population (including migrants) increases employment in wholesale and retail trade, hotels and restaurants, and decreases employment in light and heavy manufacturing industries, and in food products, beverages and tobacco industries.

Finally, we scrutinize how the rates of change in immigration affect industry-level employment, results of which are given by Table 3, where the signs, (+) and (-), refer to as *positive significant* and *negative significant*, respectively. The variable Y2, now, stands for the rate of change in employment, that is, employment (t - (t - 1))/employment (t - 1). Similarly, the variables X6, X7, and X8 stand for the change in the share of immigrants from EECs and from MPCs, and the change in the share of native population in total population, respectively. We re-estimate the model by substituting X9, the change in the total population including migrants, for X8, and present the results in the lower section of the table. As is consistent with our previous results, in this case, our results suggest a negative relationship between the change in total population and the change in employment, especially in food products, beverages, and tobacco, and light manufacturing industries. Also we observe the same effects in the same industries even when we do not substitute the change in the total population for the change in the share of native population in total population. In this case, we observe a positive impact of immigrants from MPCs on employment, especially in the construction industry.

5 Concluding Remarks

In this study, we have scrutinized the effects of ethnic diversity, measured by the share of immigrants in total population in the EU member countries, on the number of establishments and employment in the EU. We have distinguished between different industries and between different groups of source (migrant-sending) countries; i.e., Eastern European Countries (EECs) and Mediterranean Countries (MPCs).

One solid conclusion that can be drawn from our estimation results is that immigration from MPCs certainly has a capacity building effect, especially on manufacturing industries. Empirical evidence is more solid in light manufacturing as immigrants from MPCs have a positive impact both on the number of enterprises, and on employment, whereas for heavy manufacturing, the only positive effect is on employment. In contrast, immigration from EECs has a negative impact on the number of enterprises in electricity, gas and water supply industries, but a positive impact on employment, especially in food products, beverages and tobacco industries. We suppose this distinction between the results regarding employment effects is due to the historical colonial relationship between MPCs and the EU countries. Taking this relationship for granted, and given the large share of immigrants from MPCs in the EU for long time, immigrants from MPCs probably satisfy their needs of ethnic food and beverages more easily, and so do not feel the necessity to expand production capacity of ethnic food and beverages. Another possibility is that there are already sufficient imports of ethnic food and beverages, especially from MPCs to the EU. Therefore less qualified immigrants from MPCs prefer to work in less demanding but better paying positions as in the light and heavy manufacturing industries. As for the less qualified immigrants from EECs, food and beverages might be the only industry that they may get employed, especially in the short run.

Another interesting result is that there is a negative relationship between the change in the share of native population in total population and the change in employment, especially in food, beverages, and tobacco, and light manufacturing industries. Actually, this finding is consistent with the ones that we have already discussed, such that natives probably prefer to have a better work environment and to take up better paying jobs, and so they rather leave low-profile jobs to immigrants, which is also supported by the employment argument above.

Finally, our results have shown that an increase in the change in the share of immigrants

from MPCs increases employment in the construction industry, which might be expected, especially due to low skill levels of immigrants, or due to some other factors that we have already discussed in the introduction section (e.g. the non-recognition of immigrants' qualifications and skills which are earned abroad).

We believe further studies, especially looking at industry-wise trade and migration, are warranted in order to draw a complete picture. It would be interesting to find complementary results, especially between the change in trade patterns and the change in industrial enterprises. Also we leave computing the factor content of industries in order to see the similarities and differences, and factors affecting international migration as future research.

References

- [1] Aubarell, G., Aragall, X. 2005. Immigration and the Euro-Mediterranean area: keys to policy and trends. EuroMeSCo Paper No.47. Lisbon: EuroMeSCo.
- [2] Bodvarsson, O.B., Van den Berg, H., Lewer, J. 2008. Measuring immigrations effects on labor demand: a re-examination of the Mariel Boatlift. *Labour Economics* 15, 560–574.
- [3] Bodvarsson, O.B., Van den Berg, H. 2009. *The Economics of Immigration: Theory and Policy*. Berlin: Springer Verlag.
- [4] Carrére, C. 2006. Revisiting the effects of regional trade agreements on trade flows with proper specification of the gravity model. *European Economic Review* 50, 223– 247.
- [5] Cheng, I-H., Wall, H.J. 2005. Controlling for heterogeneity in gravity models of trade and integration. *Federal Reserve Bank of St. Louis Review* 87, 49–63.
- [6] Constant, A., Shachmurove, Y., Zimmermann, K.F. 2005. The role of Turkish immigrants in entrepreneurial activities in Germany. Penn Institute for Economic Research (PIER) Working Paper 05-029. Philadelphia: PIER, University of Pennsylvania.
- [7] de Benedictis L., Taglioni D. 2011. The gravity model and international trade. Mimeo.
- [8] Dinlersoz, E.M. 2004. Firm organization and the structure of retail markets. *Journal of Economics and Management Strategy* 13, 207–240.
- [9] Dunlevy, J.A. 2006. The impact of corruption and language on the pro-trade effect of immigrants: evidence from the American States. *Review of Economics and Statistics* 88, 182–186.

- [10] EC 2006. European Commission Staff Working Document, SEC(2006) 892. Second Annual Report on Migration and Integration. Brussels: Commission of the European Communities.
- [11] EMN 2005. European Migration Network. Pilot Research Study. The Impact of Immigration on Europe's Societies. The German Contribution to the Pilot Research Study. The Impact of Immigration on Germany's Society.
- [12] EMPL 2011. European Parliament. Policy Department A: Economic and Scientific Policy. The integration of migrants and its effects on the labour market. IP/A/EMPL/ST/2010-05. PE 464.435. Brussels: European Parliament.
- [13] EUROSTAT 2010. News release. Luxembourg: Publications Office of the European Union.
- [14] EUROSTAT 2011a. *Eurostat statistical books*. Luxembourg: Publications Office of the European Union.
- [15] EUROSTAT 2011b. Key figures on European business with a special feature on SMEs. Luxembourg: Publications Office of the European Union.
- [16] Frattini, T. 2008. Immigration and prices in the UK. Mimeo.
- [17] Gaston, N., Nelson, D.R. 2011. Bridging trade theory and labour econometrics: the effects of international migration. *Journal of Economic Surveys* doi: 10.1111/j.1467-6419.2011.00696.x.
- [18] Globerman, S. 1995. "Immigration and trade". In D.J. DeVoretz (ed.), Diminishing returns: Canada's recent immigration policy, Montreal: C.D Howe and the Laurier Institution.
- [19] Hanson, G.H. 2009. The economic consequences of the international migration of labor. Annual Review of Economics 1, 179–207.
- [20] Hausman, J. 1978. Specification tests in econometrics. *Econometrica* 46, 1251–71.
- [21] Head, K., Ries, J. 1998. Immigration and trade creation: econometric evidence from Canada. *Canadian Journal of Economics* 31, 47–62.
- [22] ILO (2010). International labour migration: a rights-based approach.
- [23] Kerr, S.P., Kerr, W.R. 2011. Economic impacts of immigration: a survey. NBER Working Paper 16736. Cambridge: National Bureau of Economic Research.
- [24] Lach, S. 2007. Immigration and prices. Journal of Political Economy 115, 548–587.
- [25] Mazzolari, F., Neumark, D. 2009. Beyond wages: the effects of immigration on the scale and composition of output. NBER Working Paper No. 14900, Cambridge: NBER.
- [26] Mazzolari, F., Neumark, D. 2011. Immigration and product diversity. Journal of Population Economics, doi:10.1007/s00148-011-0355-y.

- [27] Münz, R., Straubhaar, T., Vadean, F., Vadean, N. 2007. What are the migrants' contributions to employment and growth? A European approach. Hamburgisches WeltWirtschafts Institut (HWWI) Policy Paper 3-3, Hamburg: HWWI, Migration Research Group.
- [28] OECD 2007. Gaining from Migration. Towards a new mobility system. Paris: OECD.
- [29] Olney, W.W. 2011. Do firms respond to immigration? Mimeo.
- [30] Ottaviano, G., Peri, G. 2006 Rethinking the effects of immigration on wages. NBER Working Paper No. 12497, Cambridge: NBER.
- [31] Ottaviano, G., Peri, G. 2008 Immigration and national wages: clarifying the theory and the empirics. NBER Working Paper No. 14188, Cambridge: NBER.
- [32] Peri, G., Requena-Silvente, F. 2010. The trade creation effect of immigrants: evidence from the remarkable case of Spain. *Canadian Journal of Economics* 43, 1433–1459.
- [33] United Nations Economic Commision for Europe (UNECE). 2002. Economic survey of Europe, No.2.
- [34] van Delft H., Gorter C., Nijkamp P. 2000. In search of ethnic entrepreneurship opportunities in the city: a comparative policy study. *Environment and Planning C: Government and Policy* 18, 429–451.
- [35] Wagner, D., Head, K., Ries, J. 2002. Immigration and the trade of provinces. Scottish Journal of Political Economy 49, 507–525.
- [36] White, R. 2007. Immigrant-trade links, transplanted home bias and network effects. Applied Economics 39, 839–852.

Not for publication

APPENDIX: RESULTS

Changes in the number of enterprises

Y1 = # of enterprises (t - (t-1))/ enterprises (t - 1)X1= immigration from EECs (t - (t-1)) / total population (t - 1) X2= immigration from MPCs (t - (t-1))/total population (t - 1)X3= native people (t-(t-1))/total population (t-1)X4= per labor renumeration

Table A1: Mining and quarrying (I)

. xtreg yl xl	x2 x3 x4, fe	cluster(n)					
Fixed-effects Group variable		ression		Number of Number of		=	117 13
between	$= 0.0269 \\ = 0.1711 \\ = 0.0001$			Obs per o	a .	in = /g = ax =	9 9.0 9
corr(u_i, Xb)	= -0.6561			F(4,12) Prob > F		=	2.01 0.1564
			Std. Err.	adjusted	for 13 (lust	ers in n)
y1	Coef.	Robust Std. Err.	t	P> t	[95% Co	onf.	Interval]
x1 x2 x3 x4 _cons	-5.826768 1.659532 -10.20824 -168.6257 .0579442		0.06	0.949 0.118 0.813	-15.280 -54.0252 -23.4242 -1687.95 002292	21 22 57	3.632664 57.34428 3.007742 1350.705 .1181814
sigma_u sigma_e rho	.05449419 .13743415 .135861	(fraction	of varian	ce due to	u_i)		
Modified Wald in fixed effec	test for grou t regression	ıpwise heter model	roskedasti	city			
H0: sigma(i)^2	2 = sigma^2 fo	or all i					
chi2 (13) = Prob>chi2 =	1.0e+05 0.0000						
Wooldridge tes H0: no first-c F(1, Pro	order autocori 12) =		n panel da	ta			

Table A2: Mining and quarrying (II) - population to replace X3

. xtreg yl xl	x2 dlnpop x4,	fe cluste	r(n)			
Fixed-effects Group variable		ression		Number o Number o	of obs = of groups =	
between	= 0.0268 n = 0.1709 L = 0.0001			Obs per	group: min = avg = max =	9.0
corr(u_i, Xb)	= -0.6552			F(4,12) Prob > F	=	
			(Std. Err.	adjusted	l for 13 clus	ters in n)
yl	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
x1 x2 dlnpop x4 _cons	4.373359 11.90253 -10.25921 -168.3632 .0580071	6.279704 21.68721 6.122394 697.7702 .0278091	0.70 0.55 -1.68 -0.24 2.09		-9.30894 -35.34984 -23.59877 -1688.674 0025838	18.05566 59.1549 3.080335 1351.947 .118598
sigma_u sigma_e rho	.05441326 .13744015 .13550214	(fraction	of varian	ce due to) u_i)	

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 6.913Prob > F = 0.0220

Table A3: Food products, beverages and tobacco (I)

. xtreg yl xl	x2 x3 x4, fe	cluster(n)				
Fixed-effects Group variable		ession		Number of Number of		
betweer	= 0.1123 n = 0.0867 L = 0.0088			Obs per <u>o</u>	group: min = avg = max =	9.0
corr(u_i, Xb)	= -0.6946			F(4,12) Prob > F	=	
			(Std. Err.	adjusted	for 13 clus	ters in n)
yl	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
x1 x2 x3 x4 _cons	-4.031638 -7.759379 -7.932472 -25.99093 .0367635	5.348209 9.092318 4.96296 70.89335 .0236685	-0.75 -0.85 -1.60 -0.37 1.55	0.465 0.410 0.136 0.720 0.146	-15.68439 -27.56984 -18.74583 -180.4543 0148057	7.621109 12.05108 2.88089 128.4724 .0883327
sigma_u sigma_e rho	.03452333 .04870615 .33440243	(fraction	of varian	ce due to	u_i)	
Modified Wald in fixed effe			roskedasti	city		
H0: sigma(i)^2	2 = sigma^2 fo	or all i				
chi2 (13) = Prob>chi2 =	455.39 0.0000					
Wooldridge te			n panel da	ta		

Ho: no first-order autocorrelation F(1, 12) = 8.757 Prob > F = 0.0119

Table A4: Food products, beverages and tobacco (II)- population to replace X3

. xtreg yl xl	x2 dlnpop x4	, fe cluste	r(n)			
Fixed-effects Group variable		ression		Number o Number o	f obs = f groups =	
betweer	= 0.1118 n = 0.0865 L = 0.0088			Obs per	group: min = avg = max =	9.0
corr(u_i, Xb)	= -0.6936			F(4,12) Prob > F	=	
			(Std. Err.	adjusted	for 13 clus	ters in n)
yl	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
x1 x2 dlnpop x4 _cons	3.893652 .1969173 -7.966934 -25.99496 .0367886	3.048 6.414461 5.006066 70.89298 .0237865	1.28 0.03 -1.59 -0.37 1.55	0.137	-2.747369 -13.77899 -18.87421 -180.4575 0150377	10.53467 14.17283 2.940346 128.4676 .0886149
sigma_u sigma_e rho	.03444213 .04872016 .33322728	(fraction	of varian	ce due to	u_i)	

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **455.61** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 8.767Prob > F = 0.0119

Table A5: Light Manufacturing (I)

. xtreg yl xl x2	2 x3 x4, fe	robust					
Fixed-effects (w Group variable:		ession		Number o Number o	f obs f groups	=	117 13
R-sq: within = between = overall =	0.3552			Obs per g		n = g = x =	9 9.0 9
corr(u_i, Xb) =	-0.7425			F(4,12) Prob > F		=	2.13 0.1403
			(Std. Err.	adjusted	for 13 c	lus	ters in n)
yl	Coef.	Robust Std. Err.	t	P> t	[95% Co	nf.	Interval]
x2 x3	-6.573976 3.052589 -8.273735 -6.181712 .0425391	6.08823 18.65288 5.802511 6.079219 .0276283	-1.08 0.16 -1.43 -1.02 1.54	0.301 0.873 0.179 0.329 0.150	-19.8390 -37.5885 -20.9163 -19.4271 017657	6 2 9	6.691138 43.69373 4.368849 7.063767 .102736
sigma_u sigma_e rho	.03979577 .06080702 .29987581	(fraction	n of varian	ce due to	u_i)		
Modified Wald te in fixed effect			eroskedasti	city			
H0: sigma(i)^2 =	sigma^2 fo	r all i					
chi2 (13) = Prob>chi2 =	1492.19 0.0000						

. xtserial y1 x1 x2 x3 x4 Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 0.862Prob > F = 0.3715

Table A6: Light Manufacturing (II) - population to replace X3

. xtreg yl xl	x2 dlnpop x4,	fe robust				
Fixed-effects Group variable		ression			f obs = f groups =	
betweer	= 0.0825 n = 0.3548 L = 0.0001			Obs per	group: min = avg = max =	9.0
corr(u_i, Xb)	= -0.7416			F(4,12) Prob > F	=	
			(Std. Err.	adjusted	for 13 clus	ters in n)
yl	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
x1 x2 dlnpop x4 _cons	1.69095 11.34707 -8.302548 -6.18658 .0425318	2.821764 17.35261 5.846965 6.084441 .0277374	0.60 0.65 -1.42 -1.02 1.53	0.560 0.526 0.181 0.329 0.151	-4.457145 -26.46103 -21.04199 -19.44344 0179027	7.839045 49.15517 4.436894 7.070279 .1029664
sigma_u sigma_e rho	.03968709 .0608237 .2986139	(fraction	of varian	ce due to	u_i)	

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **1499.82** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 0.863 Prob > F = 0.3712

Table A7: Heavy Manufacturing (I)

. xtreg yl xl	x2 x3 x4, fe	robust				
Fixed-effects Group variable		ression		Number o Number o	fobs = fgroups =	
between	= 0.0661 = 0.3753 = 0.0000			Obs per	group: min = avg = max =	9.0
corr(u_i, Xb)	= -0.7605			F(4,12) Prob > F	=	
			(Std. Err.	adjusted	for 13 clus	ters in n)
y1	Coef.	Robust Std. Err	. t	P> t	[95% Conf.	Interval]
x1 x2 x3 x4 _cons	-8.223834 -6.546893 -10.94569 9.035625 .0624857	9.063605 16.15217 8.334354 17.56219 .0389713	-0.91 -0.41 -1.31 0.51 1.60	0.382 0.692 0.214 0.616 0.135	-27.97173 -41.73945 -29.10468 -29.2291 0224255	11.52406 28.64566 7.213313 47.30036 .1473969
sigma_u sigma_e rho	.05321628 .08880177 .26423253	(fraction	n of varian	ce due to	u_i)	

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = 4612.87 Prob>chi2 = 0.0000

Table A8: Heavy Manufacturing (II) - population to replace X3

. xtreg yl xl	x2 dlnpop x4,	fe robus	t			
Fixed-effects Group variable		ression		Number o Number o	fobs = fgroups =	
betweer	= 0.0657 n = 0.3747 L = 0.0000			Obs per	group: min = avg = max =	9.0
corr(u_i, Xb)	= -0.7597			F(4,12) Prob > F	-	
			(Std. Err.	adjusted	for 13 clus	ters in n)
у1	Coef.	Robust Std. Err	. t	P> t	[95% Conf.	Interval]
x1 x2 dlnpop x4 _cons	2.709526 4.426297 -10.98072 9.019426 .0624628	2.313085 13.77891 8.396302 17.58479 .0391175	1.17 0.32 -1.31 0.51 1.60	0.264 0.754 0.215 0.617 0.136	-2.330254 -25.59537 -29.27469 -29.29454 0227669	7.749306 34.44796 7.313251 47.33339 .1476926
sigma_u sigma_e rho	.05306015 .08882349 .26299686	(fractio	n of varian	ce due to	u_i)	

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

```
H0: sigma(i)^2 = sigma^2 for all i
```

chi2 (13) = **4624.00** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 2.122Prob > F = 0.1708

Table A9: Electricity, gas and water supply (I)

. xtreg yl xl	x2 x3 x4, fe	robust				
Fixed-effects Group variable		ression		Number of Number of	fobs = fgroups =	
betweer	= 0.0218 n = 0.7302 l = 0.0052			Obs per g	group: min = avg = max =	9.0
corr(u_i, Xb)	= -0.3756			F(4,12) Prob > F	=	
			(Std. Err.	adjusted	for 13 clus	ters in n)
yl	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
x1 x2 x3 x4 _cons	9.873084 -71.99488 -2.101343 155.3505 .0832857	9.612618 63.97854 6.856709 74.64255 .033065	1.03 -1.13 -0.31 2.08 2.52	0.325 0.282 0.765 0.059 0.027	-11.07101 -211.3921 -17.04083 -7.281657 .0112432	30.81718 67.40238 12.83814 317.9826 .1553282
sigma_u sigma_e rho	.09318541 .14557684 .29065074	(fraction	of varian	ce due to	u_i)	
Modified Wald in fixed effe			roskedasti	city		
H0: sigma(i)^2	2 = sigma^2 fo	or all i				
chi2 (13) = Prob>chi2 =	20460.87 0.0000					

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 4.375 Prob > F = 0.0584

Table A10: Electricity, gas and water supply (II) - population to replace X3

. xtreg yl xl	x2 dlnpop x4,	fe robust				
Fixed-effects Group variable		ression		Number o Number o	f obs = f groups =	
betweer	= 0.0218 n = 0.7285 L = 0.0050			Obs per	group: min = avg = max =	9.0
corr(u_i, Xb)	= -0.3725			F(4,12) Prob > F	=	
			(Std. Err.	adjusted	for 13 clus	ters in n)
yl	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
x1 x2 dlnpop x4 _cons	11.96826 -69.90366 -2.085556 155.2001 .0831761	11.39977 58.64509 6.902023 74.76407 .0331592	1.05 -1.19 -0.30 2.08 2.51	0.768	-12.86971 -197.6803 -17.12377 -7.696843 .0109284	36.80623 57.87302 12.95266 318.097 .1554239
sigma_u sigma_e rho	.09309845 .14557879 .29026035	(fraction	of varian	ce due to	u_i)	

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **20495.99** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 4.379Prob > F = 0.0583

Table A11: Construction (I)

. xtreg yl xl	x2 x3 x4, fe	robust				
Fixed-effects Group variable		ression		Number of Number of		
betweer	= 0.0270 $= 0.1338$ $= 0.0028$			Obs per g	group: min = avg = max =	9.0
corr(u_i, Xb)	= -0.4407			F(4,12) Prob > F	=	
			(Std. Err.	adjusted	for 13 clus	ters in n)
y1	Coef.	Robust Std. Err	. t	P> t	[95% Conf.	Interval]
x1 x2 x3 x4 _cons	-125.3513 111.4848 -9.498347 505.4124 .1166163	88.42307 82.70509 20.37069 530.5841 .0681508	-1.42 1.35 -0.47 0.95 1.71	0.182 0.203 0.649 0.360 0.113	-318.0086 -68.7141 -53.88226 -650.631 0318715	67.30605 291.6837 34.88556 1661.456 .2651042
sigma_u sigma_e rho	.31570407 .87960284 .11412006	(fractio	n of varian	ce due to	u_i)	

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **5.0e+06** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 0.645Prob > F = 0.4374

Table A12: Construction (II) - population to replace X3

. xtreg yl xl x2 dlnpop x4, fe robust								
				Number o Number o	fobs = fgroups =			
. betweer	= 0.0270 n = 0.1335 L = 0.0028			Obs per	group: min = avg = max =	9.0		
corr(u_i, Xb)	= -0.4409			F(4,12) Prob > F	=			
			(Std. Err.	adjusted	for 13 clus	ters in n)		
yl	Coef.	Robust Std. Err	. t	P> t	[95% Conf.	Interval]		
x1 x2 dlnpop x4 _cons	-115.8434 121.0402 -9.631268 505.5811 .11706	69.95987 97.83871 20.55267 530.6386 .0686185	-1.66 1.24 -0.47 0.95 1.71	0.124 0.240 0.648 0.360 0.114	-268.2728 -92.132 -54.41168 -650.5812 032447	36.58608 334.2125 35.14915 1661.743 .2665669		
sigma_u sigma_e rho	.3157346 .87959954 .11414037	(fraction	n of varian	ce due to	u_i)			

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **5.0e+06** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 0.644 Prob > F = 0.4377

Table A13: W/sale, Retail Trade; Hotels and Rest. (I)

. xtreg y1 x1 x2 x3 x4, fe robust							
Fixed-effects Group variable		ession		Number o Number o	f obs = f groups =		
between	= 0.0776 = 0.0463 = 0.0134			Obs per	group: min = avg = max =	9.0	
corr(u_i, Xb)	= -0.6618			F(4,12) Prob > F	=		
			(Std. Err.	adjusted	for 13 clus	ters in n)	
yl	Coef.	Robust Std. Err	. t	P> t	[95% Conf.	Interval]	
x1 x2 x3 x4 _cons	-79.26534 64.30553 -77.174 148.0758 .437367	55.95004 135.1499 49.84077 163.7172 .2184764		0.147	-201.17 -230.1607 -185.7677 -208.6334 0386522	42.63933 358.7718 31.41971 504.785 .9133862	
sigma_u sigma_e rho	.3327484 .65201447 .20662995	(fractio	n of varian	ce due to	u_i)		
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model							
H0: sigma(i)^2 = sigma^2 for all i							
chi2 (13) = Prob>chi2 =	83693.93 0.0000						

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 2.985 Prob > F = 0.1097

Table A14: W/sale, Retail Trade; Hotels and Rest. (II) - population to replace X3

. xtreg yl xl	x2 dlnpop x4,	fe robust				
Fixed-effects Group variable		ression		Number o Number o	f obs = f groups =	
. between	= 0.0772 = 0.0455 = 0.0135			Obs per	group: min = avg = max =	9.0
corr(u_i, Xb)	= -0.6602			F(4,12) Prob > F	=	
		(Std. Err.	adjusted	for 13 clus	ters in n)
yl	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
x1 x2 dlnpop x4 _cons	-2.176243 141.6776 -77.44784 148.1915 .4372917	17.29201 120.5037 50.24963 163.9207 .2194712	-0.13 1.18 -1.54 0.90 1.99	0.902 0.263 0.149 0.384 0.070	-39.8523 -120.8775 -186.9324 -208.961 040895	35.49982 404.2327 32.03669 505.344 .9154783
sigma_u sigma_e rho	.33164945 .65214724 .20548095	(fraction	of varian	ce due to	u_i)	

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **83905.07** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = **2.987** Prob > F = **0.1096**

The number of enterprises

Y = # of enterprises

Y2= the share of immigrants from EECs in the total population

Y3= the share of immigrants from MPCs in the total population

Y4= the share of natives in the total population

Y5= renumeration paid to employees

Table A15: Mining and quarrying (I)

. xtreg y y2 y	y3 y4 y5, fe i	robust				
Fixed-effects Group variable		ression		Number o Number o	of obs = of groups =	
betweer	= 0.0579 n = 0.1932 l = 0.1829			Obs per	group: min = avg = max =	10.0
corr(u_i, Xb)	= -0.5479			F(3,12) Prob > F	=	
			(Std. Err.	adjusted	l for 13 clus	ters in n)
У	Coef.	Robust Std. Err.	t t	P> t	[95% Conf.	Interval]
y2 y3 y4 y5 _cons	(dropped) 57.05161 .0229511 1411431 7.644037	54.80186 6.276368 .0956351 6.081973	1.04 0.00 -1.48 1.26	0.318 0.997 0.166 0.233	-62.35139 -13.65208 3495141 -5.607444	176.4546 13.69798 .0672278 20.89552
sigma_u sigma_e rho	1.1216383 .10928668 .99059573	(fractior	n of varian	ice due to	u_i)	

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **26579.48** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 0.390 Prob > F = 0.5442

Table A16: Mining and quarrying (II) - population to replace Y4

. xtreg y y2 y3 lnpop y5, fe robust								
Fixed-effects Group variable		ression		Number o Number o	of obs = of groups =			
. betweer	= 0.0800 n = 0.5362 l = 0.5311			Obs per	group: min = avg = max =	10.0		
corr(u_i, Xb)	= -0.4292			F(4,12) Prob > F	=			
			(Std. Err.	adjusted	l for 13 clus	ters in n)		
У	Coef.	Robust Std. Err.	. t	P> t	[95% Conf.	Interval]		
y2 y3 lnpop y5 _cons	-3.638216 34.97832 1.228025 200024 -12.46872	5.834633 42.00829 .8293968 .0860342 13.87289	-0.62 0.83 1.48 -2.32 -0.90	0.545 0.421 0.164 0.038 0.386	-16.35079 -56.54987 5790752 3874764 -42.69514	9.074356 126.5065 3.035126 0125715 17.75771		
sigma_u sigma_e rho	.78336 .108479 .98118435	(fraction	n of varian	ce due to	0 u_i)			

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **1.2e+05** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 0.386 Prob > F = 0.5462

Table A17: Food products, beverages and tobacco (I)

. xtreg y y2	y3 y4 y5, fe	cluster(n)					
Fixed-effects Group variabl		ression			of obs of grou		
betwee	= 0.0057 n = 0.0200 l = 0.0197			Obs pe	r group:	min = avg = max =	10 10.0 10
corr(u_i, Xb)	= 0.1155			F(3,12 Prob >		=	
			(Std. Er	r. adjust	ed for 1	3 clus	ters in n)
У	Coef.	Robust Std. Err	. t	P> t	[95%	₅ Conf.	Interval]
y2 y3 y4 y5 _cons	(dropped) 14.96854 1.773957 .0283705 6.960836	30.24585 7.772036 .1679819 8.378046	0.49 0.23 0.17 0.83	0.823	-15.1	6306	80.86858 18.70777 .3943715 25.21503
sigma_u sigma_e rho	1.263439 .06283051 .99753305	(fractio	n of vari	ance due	to u_i)		

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i chi2 (13) = **3518.76** Prob>chi2 = **0.0000** Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 116.156 Prob > F = 0.0000

Table A18: Food products, beverages and tobacco (II) - population to replace Y4

. xtreg y y2 y3 lnpop y5, fe cluster(n)								
				Number o Number o	fobs = fgroups =			
betwee	= 0.1332 n = 0.2961 l = 0.2952			Obs per	group: min = avg = max =	10.0		
corr(u_i, Xb)	= -0.9233			F(4,12) Prob > F	=			
			(Std. Err.	adjusted	for 13 clus	ters in n)		
У	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]		
y2 y3 lnpop y5 _cons	.9524156 36.12232 -1.924329 .2597026 38.91689	5.921495 24.29297 .6554344 .1794004 10.77939	0.16 1.49 -2.94 1.45 3.61	0.875 0.163 0.012 0.173 0.004	-11.94941 -16.8075 -3.352398 1311773 15.43063	13.85425 89.05215 4962599 .6505824 62.40316		
sigma_u sigma_e rho	2.770297 .05892272 .99954781	(fraction	n of varian	ce due to	u_i)			

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **1117.95** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 74.833 Prob > F = 0.0000

Table A19: Light Manufacturing (I)

. xtreg y y2 y3 y4 y5, fe o	luster(n)					
Fixed-effects (within) regr Group variable: n	ression		Number o Number o	f obs = f groups =		
R-sq: within = 0.0856 between = 0.1526 overall = 0.1481			Obs per	group: min = avg = max =	10.0	
corr(u_i, Xb) = 0.3081			F(3,12) Prob > F	=		
	(S [.]	td. Err.	adjusted	for 13 clus	ters in n)	
y Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]	
	25.44937 7.744295 .1150632 8.174465	2.66 1.04 0.50 0.25		12.28429 -8.798805 1930584 -15.73117	123.1831 24.94793 .3083439 19.89009	
sigma_u 1.0092067 sigma_e .0645627 rho .99592405	(fraction o	f varian	ce due to	u_i)		
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model						
H0: sigma(i)^2 = sigma^2 fo	oralli					

chi2 (13) = **1744.71** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 16.848 Prob F = 0.0015

Table A20: Light Manufacturing (II) - population to replace Y4

. xtreg y y2 y3 lnpop y5, fe cluster(n)							
Fixed-effects Group variable		ression			of obs = of groups =		
betweer	= 0.0882 n = 0.7037 L = 0.6998			Obs per	group: min = avg = max =	10.0	
corr(u_i, Xb)	= 0.7189			F(4,12) Prob > F	= =		
			(Std. Err.	adjusted	d for 13 clus	ters in n)	
у	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]	
y2 y3 lnpop y5 _cons	-9.00969 56.87239 .2363639 .0480182 6.299223	8.78185 24.16504 .9073443 .1346873 14.29853	-1.03 2.35 0.26 0.36 0.44	0.325 0.036 0.799 0.728 0.667	-28.1437 4.221287 -1.74057 2454403 -24.85459	10.12432 109.5235 2.213297 .3414767 37.45304	
sigma_u sigma_e rho	.81669045 .06475375 .99375269	(fraction	of varian	ce due to	o u_i)		

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **1866.58** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 16.958 Prob F = 0.0014

Table A21: Heavy Manufacturing (I)

. xtreg y y2 y	/3 y4 y5, fe o	cluster(n)				
Fixed-effects Group variable		ression		Number o Number o	f obs = f groups =	
between	= 0.1057 n = 0.1674 L = 0.1669			Obs per	group: min = avg = max =	10.0
corr(u_i, Xb)	= 0.0615			F(3,12) Prob > F		2.99 0.0734
		(S	td. Err.	adjusted	for 13 clus	ters in n)
У	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
y2 y3 y4 y5 _cons	(dropped) 59.57072 6.699602 .2342892 1.096298	37.16355 6.221693 .1474163 6.65911	1.60 1.08 1.59 0.16	0.138	-21.40171 -6.856302 0869033 -13.41266	140.5431 20.25551 .5554817 15.60525
sigma_u sigma_e rho	.89807179 .08422153 .99128191	(fraction o	f varian	ice due to	u_i)	
Modified Wald in fixed effec H0: sigma(i)^2	ct regression	model	skedasti	city		

chi2 (13) = **5594.64** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 82.633Prob > F = 0.0000

Table A22: Heavy Manufacturing (II) - population to replace Y4

. xtreg y y2 y3 lnpop y5, fe cluster(n)									
					ofobs = ofgroups =				
betweer	= 0.1309 n = 0.8486 L = 0.8430			Obs per	group: min = avg = max =	= 10.0			
corr(u_i, Xb)	= -0.6613			F(4,12) Prob > F	-				
			(Std. Err.	adjusted	d for 13 clus	sters in n)			
У	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	[Interval]			
y2 y3 lnpop y5 _cons	-9.474203 42.31306 1.136907 .1156315 -10.0462	8.753762 36.79089 1.505808 .2296331 23.45318	-1.08 1.15 0.76 0.50 -0.43	0.465	-28.54701 -37.8474 -2.143968 384696 -61.14629	9.598606 122.4735 4.417781 .615959 41.05389			
sigma_u sigma_e rho	.5096059 .08339402 .97391903	(fraction	of varian	ce due to	o u_i)				

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **2493.92** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 80.735 Prob F = 0.0000

Table A23: Electricity, gas and water supply (I)

. xtreg y y2 y	/3 y4 y5, fe o	luster(n)					
					fobs = fgroups =		
betweer	= 0.2932 n = 0.3980 l = 0.3921			Obs per g	group: min = avg = max =	10.0	
corr(u_i, Xb)	= -0.3329			F(3,12) Prob > F	=		
			(Std. Err.	adjusted	for 13 clus	ters in n)	
у	Coef.	Robust Std. Err	. t	P> t	[95% Conf.	Interval]	
y2 y3 y4 y5 _cons	(dropped) 167.4189 -14.78333 1.037758 13.09371	134.804 34.32633 .3914173 35.03086	1.24 -0.43 2.65 0.37		-126.2938 -89.57399 .1849326 -63.23199	461.1317 60.00732 1.890582 89.41941	
sigma_u sigma_e rho	1.0201014 .23155369 .95099988	(fraction	ı of varian	ce due to	u_i)		
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model H0: sigma(i)^2 = sigma^2 for all i chi2 (13) = 1077.35 Prob>chi2 = 0.0000							

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 18.549Prob F = 0.0010

Table A24: Electricity, gas and water supply (II) - population to replace Y4

. xtreg y y2 y	. xtreg y y2 y3 lnpop y5, fe cluster(n)								
					f obs = f groups =				
. betweer	= 0.7159 n = 0.1065 l = 0.1036			Obs per	group: min = avg = max =	10.0			
corr(u_i, Xb)	= -0.9958			F(4,12) Prob > F	=				
			(Std. Err.	adjusted	for 13 clus	ters in n)			
У	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]			
y2 y3 lnpop y5 _cons	-29.32887 5.519625 13.10346 .2081023 -214.0661	10.99351 104.4741 2.226795 .2141403 36.42509	-2.67 0.05 5.88 0.97 -5.88	0.020 0.959 0.000 0.350 0.000	-53.28167 -222.1098 8.251685 2584693 -293.4296	-5.376074 233.1491 17.95523 .6746738 -134.7026			
sigma_u sigma_e rho	13.043973 .14744217 .99987225	(fraction	n of varian	ce due to	u_i)				

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **47214.16** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 16.988 Prob > F = 0.0014

Table A25: Construction (I)

. xtreg y y2 y3	8 y4 y5, fe r	obust				
	Fixed-effects (within) regression Group variable: n					130 13
between	= 0.5451 = 0.1965 = 0.2057			Obs per g	group: min = avg = max =	10.0
corr(u_i, Xb)	= -0.5383			F(3,12) Prob > F	=	
		(Std. Err.	adjusted	for 13 clus	ters in n)
У	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
y2 y3 y4 y5 _cons	(dropped) -47.18967 4.360879 .9673917 -2.20785	65.83421 10.79596 .3217963 9.087008	-0.72 0.40 3.01 -0.24	0.487 0.693 0.011 0.812	-190.6301 -19.1615 .2662577 -22.00674	96.25075 27.88326 1.668526 17.59104
sigma_u sigma_e rho	1.1208527 .17021871 .97745683	(fraction	of varian	ce due to	u_i)	
Modified Wald t in fixed effect H0: sigma(i)^2	regression	model	roskedasti	city		

H0: sigma(i)^2 = sigma^2 chi2 (13) = 2459.00 Prob>chi2 = 0.0000

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 1.985 Prob > F = 0.1842

Table A26: Construction (II) - population to replace Y4

. xtreg y y2 y3 lnpop y5, fe robust								
				Number o Number o	fobs = fgroups =			
betweer	= 0.5669 n = 0.7632 L = 0.7043			Obs per	group: min = avg = max =	10.0		
corr(u_i, Xb)	= -0.9909			F(4,12) Prob > F	=			
			(Std. Err.	adjusted	for 13 clus	ters in n)		
У	Coef.	Robust Std. Err	. t	P> t	[95% Conf.	Interval]		
y2 y3 lnpop y5 _cons	3.919681 -16.589 -3.649449 1.189026 61.0255	19.00681 33.02559 5.122851 .5922804 80.08325	-0.50 -0.71	0.840 0.625 0.490 0.068 0.461	-37.4926 -88.54559 -14.81118 1014416 -113.4609	45.33196 55.36759 7.512284 2.479495 235.5119		
sigma_u sigma_e rho	4.1685117 .16682626 .99840091	(fractio	n of varian	ce due to	u_i)			

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **23714.64** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 2.194 F(1, 12) F = 0.1643

Table A27: W/sale, Retail Trade; Hotels and Rest. (I)

. xtreg y y2 y3 y4 y5, fe robust Fixed-effects (within) regression Number of obs = Group variable: n Number of groups =								
R-sq: within = 0.3857 between = 0.0766 overall = 0.0897			Obs per g	group: min = avg = max =	10.0			
corr(u_i, Xb) = -0.3298			F(3,12) Prob > F	=				
		(Std. Err.	adjusted	for 13 clus	ters in n)			
y Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]			
y2 (dropped) y3 77.53143 y4 14.88023 y5 .5660977 _cons -8.416104	81.46885 18.35249 .1333706 18.19901	0.95 0.81 4.24 -0.46	0.001	-99.97394 -25.10642 .2755081 -48.06834	255.0368 54.86687 .8566873 31.23613			
sigma_u 1.0183462 sigma_e .21391487 rho .95773915	(fraction	of varian	ce due to	u_i)				
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model								
H0: sigma(i)^2 = sigma^2 f	H0: sigma(i)^2 = sigma^2 for all i							

chi2 (13) = **15654.74** Prob>chi2 = **0.0000**

```
Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 1.819 Prob > F = 0.2024
```

Table A28: W/sale, Retail Trade; Hotels and Rest. (II) - population to replace Y4

. xtreg y y2 y	3 lnpop y5, 1	fe robust				
Fixed-effects Group variable		ression			f obs = f groups =	
between	= 0.4010 = 0.8342 = 0.7562			Obs per g	group: min = avg = max =	10.0
corr(u_i, Xb)	= -0.9909			F(4,12) Prob > F	=	
			(Std. Err.	adjusted	for 13 clus	ters in n)
У	Coef.	Robust Std. Err.	. t	P> t	[95% Conf.	Interval]
y2 y3 lnpop y5 _cons	-8.147728 85.05002 -2.750414 .6594793 51.43497	16.05847 55.94763 1.638235 .1564379 26.17944	-0.51 1.52 -1.68 4.22 1.96		-43.13613 -36.8494 -6.319822 .3186303 -5.605128	26.84067 206.9494 .8189943 1.000328 108.4751
sigma_u sigma_e rho	3.4565356 .21217494 .99624619	(fraction	n of varian	ce due to	u_i)	

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **12049.45** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 1.721Prob > F = 0.2141

Changes in employment

Y1= employment (t - (t-1))/ employment (t - 1) X1= immigrants from EECs (t - (t-1)) / total population (t - 1) X2= immigrants from MPCs (t - (t-1))/ total population (t - 1) X3= native people (t- (t-1))/ total population (t - 1)

Table A29: Mining and quarrying (I)

. xtreg yl x1 x2 x3, fe robust Fixed-effects (within) regression Group variable: \boldsymbol{n} Number of obs Number of groups 117 13 = R-sq: within = 0.0047 between = 0.0339 overall = 0.0002 Obs per group: min = avg = max = 9 9.0 9 F(**3,12**) Prob > F 0.50 0.6872 = corr(u_i, Xb) = -0.3223 (Std. Err. adjusted for 13 clusters in n) Robust Std. Err. P>|t| [95% Conf. Interval] y1 Coef. t x1 x2 x3 2.828564 -12.45903 2.131668 -.0185745 3.138674 15.24799 2.394258 .0113436 0.90 -0.82 0.89 -1.64 0.385 0.430 0.391 0.127 -4.010019 -45.68155 -3.084972 -.0432902 9.667146 20.76348 7.348308 .0061412 cons sigma_u sigma_e rho .02137637 .08437394 .0603161 (fraction of variance due to u_i) Modified Wald test for groupwise heteroskedasticity in fixed effect regression model H0: sigma(i)^2 = sigma^2 for all i chi2 (13) = Prob>chi2 = 690.87 0.0000

Table A30: Mining and quarrying (II) - population to replace X3

ixed-effects roup variable		ression		Number o Number o	fobs = fgroups =	
between	$= 0.0048 \\ = 0.0341 \\ = 0.0002$			Obs per	group: min = avg = max =	9.0
corr(u_i, Xb)	= -0.3234			F(3,12) Prob > F	=	
			(Std. Err.	adjusted	for 13 clus	ters in n)
y1	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
x1 x2 dlnpop _cons	.6957452 -14.60521 2.156283 0186534	1.968906 15.56878 2.412193 .0113866	0.35 -0.94 0.89 -1.64		-3.594132 -48.52667 -3.099435 0434627	4.985622 19.31625 7.412 .0061559
sigma_u sigma_e rho	.02138914 .08437272 .06038544	(fraction	of varian	ce due to	u i)	

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = 690.92 Prob>chi2 = 0.0000

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 0.258Prob > F = 0.6206

Table A31: Food products, beverages and tobacco (I)

. xtreg yl xl	x2 x3, fe clu	uster(n)				
	Fixed-effects (within) regression Group variable: n					117 13
betwee	= 0.0063 n = 0.0862 l = 0.0007			Obs per	group: min = avg = max =	9.0
corr(u_i, Xb)	= -0.4715			F(3,12) Prob > F	=	
		(Std. Err.	adjusted	for 13 clus	ters in n)
yl	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
x1 x2 x3 _cons	-1.517677 -1.261237 -1.539014 .002266	2.958406 11.34956 .8212806 .0037843	-0.51 -0.11 -1.87 0.60	0.617 0.913 0.085 0.560	-7.96349 -25.98981 -3.328431 0059793	4.928136 23.46734 .2504024 .0105113
sigma_u sigma_e rho	.01449154 .04207326 .10605427	(fraction	of varian	ce due to	u_i)	
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model						
H0: sigma(i)^:	2 = sigma^2 fo	or all i				
chi2 (13) =	230.21					

Table A32: Food products, beverages and tobacco (II) - population to replace X3

. xtreg y1 x1 x2 dlnpop, fe cluster(n)								
Fixed-effects (with Group variable: n	Number of Number of	f obs f groups	= 117 = 13					
R-sq: within = 0. between = 0. overall = 0.	0860			Obs per g	group: min avg max	= 9.0		
corr(u_i, Xb) = -0	.4709			F(3,12) Prob > F		= 1.53 = 0.2562		
		(St	d. Err.	adjusted	for 13 clu	usters in n)		
yl		Robust d. Err.	t	P> t	[95% Con	f. Interval]		
x2 .2 dlnpop -	843025 11 1.5493 .8	801857 1.73508 8271909 003798	0.01 0.02 -1.87 0.60	0.994 0.981 0.086 0.558	-6.084057 -25.28424 -3.351595 0059872			
sigma_e .04	.448657 207326 9598923 (1	fraction of	varian	ce due to	u_i)			

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **230.26** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 5.412Prob > F = 0.0383

Table A33: Light Manufacturing (I)

. xtreg yl xl	x2 x3, fe rob	oust				
Fixed-effects Group variable		ression		Number o Number o	fobs = fgroups =	
between	= 0.0210 n = 0.0083 L = 0.0045			Obs per	group: min = avg = max =	= 9.0
corr(u_i, Xb)	= -0.4036			F(3,12) Prob > F	-	
			(Std. Err.	adjusted	for 13 clus	sters in n)
yl	Coef.	Robust Std. Err	. t	P> t	[95% Conf.	Interval]
x1 x2 x3 _cons	-7.18586 18.71142 -4.340812 .0143627	7.670385 15.97737 2.360225 .0111306	1.17	0.367 0.264 0.091 0.221	-23.89819 -16.10028 -9.483301 0098889	9.526474 53.52312 .8016767 .0386142
sigma_u sigma_e rho	.027731 .07435501 .1221099	(fractio	n of varian	ce due to	u_i)	
Modified Wold	· · · · ·					

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **18614.72** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 0.089Prob F = 0.7708

Table A34: Light Manufacturing (II) - population to replace X3

. xtreg yl xl x2 dlnpop, fe robust								
Fixed-effects Group variable	Number o Number o	fobs = fgroups =						
between	= 0.0211 n = 0.0082 = 0.0046			Obs per	group: min = avg = max =	9.0		
corr(u_i, Xb)	= -0.4031			F(3,12) Prob > F	=			
			(Std. Err.	adjusted	for 13 clus	ters in n)		
y1	Coef.	Robust Std. Err	. t	P> t	[95% Conf.	Interval]		
x1 x2 dlnpop _cons	-2.846265 23.07242 -4.373204 .01444	7.002979 17.26133 2.383085 .0111991	1.34	0.692 0.206 0.091 0.222	-18.10444 -14.53679 -9.565499 0099607	12.41192 60.68163 .8190919 .0388407		
sigma_u sigma_e rho	.02772328 .07435409 .12205282	(fractio	n of varian	ce due to	u_i)			

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **18400.14** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 0.091 Prob > F = 0.7687

Table A35: Heavy Manufacturing (I)

. xtreg y1 x1 x2 x3, fe robust								
	Fixed-effects (within) regression Group variable: n					117 13		
betweer	= 0.0315 n = 0.0071 L = 0.0244			Obs per	group: min = avg = max =	9.0		
corr(u_i, Xb)	= -0.1499			F(3,12) Prob > F				
			(Std. Err.	adjusted	for 13 clus	ters in n)		
yl	Coef.	Robust Std. Err	. t	P> t	[95% Conf.	Interval]		
x1 x2 x3 _cons	156907 26.8917 -2.670229 .0093407	2.681787 21.86134 2.57361 .0116087	-0.06 1.23 -1.04 0.80	0.954 0.242 0.320 0.437	-6.000019 -20.74006 -8.277644 0159525	5.686205 74.52347 2.937186 .0346339		
sigma_u sigma_e rho	sigma_e .06059977							
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model H0: sigma(i)^2 = sigma^2 for all i								

Table A36: Heavy Manufacturing (II) - population to replace X3

. xtreg yl xl x2 dlnpop, fe robust								
					f obs = f groups =			
betweer	= 0.0315 n = 0.0072 L = 0.0245			Obs per g	group: min = avg = max =	9.0		
corr(u_i, Xb)	= -0.1487			F(3,12) Prob > F	=			
			(Std. Err.	adjusted	for 13 clus	ters in n)		
yl	Coef.	Robust Std. Err.	t t	P> t	[95% Conf.	Interval]		
x1 x2 dlnpop _cons	2.511371 29.57119 -2.684163 .0093601	2.857931 22.92743 2.595958 .0116688	0.88 1.29 -1.03 0.80	0.397 0.221 0.322 0.438	-3.715527 -20.38338 -8.340269 016064	8.738268 79.52576 2.971943 .0347842		
sigma_u sigma_e rho	.01889535 .06060056 .08860596	(fraction	n of varian	ce due to	u_i)			

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **1783.13** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 2.036 Prob F = 0.1791

Table A37: Electricity, gas and water supply (I)

. xtreg yl xl	x2 x3, fe rob	oust				
					f obs = f groups =	
betweer	= 0.0115 n = 0.1557 l = 0.0267			Obs per g	group: min = avg = max =	9.0
corr(u_i, Xb)	= -0.0320			F(3,12) Prob > F	=	
		(Std. Err.	adjusted	for 13 clus	ters in n)
y1	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
x1 x2 x3 _cons	4.876119 4.831504 3.212526 0229599	5.035444 22.11056 2.087078 .0097086	0.97 0.22 1.54 -2.36	0.352 0.831 0.150 0.036	-6.095172 -43.34326 -1.334825 0441131	15.84741 53.00627 7.759878 0018067
sigma_u sigma_e rho	.02143709 .06981997 .08614855	(fraction	of varian	ce due to	u_i)	
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model						
H0: sigma(i)^2 = sigma^2 for all i						
chi2 (13) =	11763.82					

chi2 (13) = 11763.82 Prob>chi2 = 0.0000 Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 1.877 Prob > F = 0.1958

Table A38: Electricity, gas and water supply (II) - population to replace X3

. xtreg yl x1 x2 dlnpop, fe robust									
					f obs f groups	=	117 13		
R-sq: within = between = overall =	0.1560			Obs per g		n = g = k =	9.0 9.0		
corr(u_i, Xb) =	-0.0307			F(3,12) Prob > F		=			
			(Std. Err.	adjusted	for 13 c	lus	ters in n)		
yl	Coef.	Robust Std. Err.	t t	P> t	[95% Coi	nf.	Interval]		
x2 dlnpop	1.665826 1.607537 3.229865 .0229859	5.007096 22.26182 2.105609 .0097592	0.33 0.07 1.53 -2.36	0.745 0.944 0.151 0.036	-9.243699 -46.8960 -1.357860 0442499	3	12.57535 50.11187 7.817593 0017223		
sigma_e .	02143297 06982084 08611631	(fraction	ı of varian	ce due to	u_i)				

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **11767.38** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 1.877 Prob F = 0.1958

Table A39: Construction (I)

. xtreg y1 x1 x2 x3, fe robust								
Fixed-effects (within) re Group variable: n	Number o Number o	of obs = of groups =						
R-sq: within = 0.0164 between = 0.1262 overall = 0.0045	Obs per	group: min = avg = max =	9.0					
corr(u_i, Xb) = -0.3574			F(3,12) Prob > F					
		(Std. Err.	adjusted	d for 13 clus	ters in n)			
yl Coef	Robust Std. Err	. t	P> t	[95% Conf.	Interval]			
x1 -22.3525 x2 78.19556 x3 5.046003 _cons .011263	6.318253	-1.05 1.82 0.80 0.37		-68.58213 -15.38246 -8.720288 0557995	23.87703 171.7736 18.81229 .078327			
sigma_u .05216073 sigma_e .22322164 rho .05177568 (fraction of variance due to u_i)								
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model H0: sigma(i)^2 = sigma^2 for all i								

H0: sigma(i)^2 = sigma^2 for all i chi2 (13) = 1.6e+05Prob>chi2 = 0.0000Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 2.328Prob > F = 0.1530

Table A40: Construction (II) - population to replace X3

sigma_u sigma_e rho	.05211532 .22322581 .05168839		n of varian					
x1 x2 dlnpop cons	-27.38829 73.14934 5.039588 .011381	17.76619 46.82628 6.373687 .0309371	-1.54 1.56 0.79 0.37		-66.09749 -28.87637 -8.847482 0560251	11.3209 175.175 18.92666 .0787872		
y1	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]		
			(Std. Err.	adjusted	for 13 clus	ters in n)		
corr(u_i, Xb)	= -0.3561			F(3,12) Prob > F	=			
R-sq: within = 0.0164 Obs per group: min = between = 0.1278 avg = overall = 0.0045 max =								
					f obs = f groups =			
. xtreg y1 x1 x2 dlnpop, fe robust								

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **1.6e+05** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 2.323 Prob > F = 0.1534

Table A41: W/sale, Retail Trade; Hotels and Rest. (I)

. xtreg y1 x1 x2 x3, fe	cluster(n)						
Fixed-effects (within) Group variable: n	Fixed-effects (within) regression Group variable: n				117 13		
R-sq: within = 0.0525 between = 0.0065 overall = 0.0123			Obs per	group: min = avg = max =	9.0		
corr(u_i, Xb) = -0.578	3		F(3,12) Prob > F				
		(Std. Err.	adjusted	d for 13 clus	ters in n)		
yl Coe	Robust f. Std. Err	. t	P> t	[95% Conf.	Interval]		
x1 -61.152 x2 121.25 x3 -69.427 _cons .4293	51 141.9327 56 50.55852	-1.12 0.85 -1.37 1.77		-180.0925 -187.9887 -179.5852 0995611	57.7882 430.5009 40.72989 .9581731		
sigma_e .660916	sigma_e .66091658						
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model							
H0: sigma(i)^2 = sigma^2 for all i							

chi2 (13) = **1.1e+06** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 33.305Prob > F = 0.0001

Table A42: W/sale, Retail Trade; Hotels and Rest. (II) - population to replace X3

. xtreg y1 x1 x2 dlnpop, fe cluster(n)									
Fixed-effects Group variable		Number o Number o	f obs = f groups =						
betweer	= 0.0522 n = 0.0061 L = 0.0124			Obs per	group: min = avg = max =	9.0			
corr(u_i, Xb)	= -0.5764			F(3,12) Prob > F	=				
			(Std. Err.	adjusted	for 13 clus	ters in n)			
yl	Coef.	Robust Std. Err	. t	P> t	[95% Conf.	Interval]			
x1 x2 dlnpop _cons	8.196616 190.8505 -69.6497 .429151	17.67514 129.1669 50.94174 .2436714	0.46 1.48 -1.37 1.76	0.651 0.165 0.197 0.104	-30.3142 -90.58011 -180.6422 1017634	46.70743 472.281 41.34282 .9600655			
sigma_u sigma_e rho	.30100039 .66103332 .17173432	(fraction	n of varian	ce due to	u_i)				

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **1.1e+06** Prob>chi2 = **0.0000**

Employment

Y = employment Y2 = immigrants from EECs / total population Y3 = immigrants from MPCs / total population Y4 = native population / total population

Table A43: Mining and quarrying (I)

. xtreg y y2 y	y3 y4, fe clus	ster(n)				
Fixed-effects Group variable		ression		Number o Number o	f obs f groups	= 130 = 13
betweer	= 0.0272 n = 0.0000 l = 0.0000			Obs per	group: mir avç max	g = 10.0
corr(u_i, Xb)	= -0.0174			F(2,12) Prob > F		= 1.14 = 0.3518
		(9	Std. Err.	adjusted	for 13 cl	lusters in n)
У	Coef.	Robust Std. Err.	t	P> t	[95% Cor	nf. Interval]
y2 y3 y4 _cons	(dropped) -53.37374 -2.619496 12.24406	50.98678 7.659365 7.669525	-1.05 -0.34 1.60	0.316 0.738 0.136	-164.4644 -19.30782 -4.466398	14.06883
sigma_u sigma_e rho	1.1891735 .09143632 .99412258	(fraction d	of varian	ce due to	u_i)	
Modified Wald in fixed effe			oskedasti	city		
H0: sigma(i)^2	2 = sigma^2 fo	or all i				
chi2 (13) =	4143.41					

chi2 (13) = 4143.41 Prob>chi2 = 0.0000

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 66.072Prob > F = 0.0000

Table A44: Mining and quarrying (II) - population to replace Y4

. xtreg y y2 y3 lnpop, fe cluster(n)									
Fixed-effects Group variable			Number o Number o	f obs = f groups =					
between	= 0.0808 = 0.8860 = 0.8799			Obs per	group: min = avg = max =	10.0			
corr(u_i, Xb)	= -0.9877			F(3,12) Prob > F	=				
			(Std. Err.	adjusted	for 13 clus	ters in n)			
У	Coef.	Robust Std. Err.	t t	P> t	[95% Conf.	Interval]			
y2 y3 lnpop _cons	9.082087 -27.908 -1.419316 33.34977	7.619568 62.90886 1.154379 19.28766	1.19 -0.44 -1.23 1.73	0.256 0.665 0.242 0.109	-7.519526 -164.9746 -3.934492 -8.674436	25.6837 109.1586 1.09586 75.37398			
sigma_u sigma_e rho	2.5866155 .08927053 .99881031	(fractior	n of varian	ce due to	u_i)				

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **1422.47** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 61.543 Prob > F = 0.0000

Table A45: Food products, beverages and tobacco (I)

. xtreg y y2 y	. xtreg y y2 y3 y4, fe cluster(n)								
Fixed-effects Group variable		ression			f obs = f groups =				
betweer	= 0.0459 n = 0.0017 l = 0.0009			Obs per	group: min = avg = max =	10.0			
corr(u_i, Xb)	= -0.0462			F(2,12) Prob > F					
		(Std. Err.	adjusted	for 13 clus	ters in n)			
У	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]			
y2 y3 y4 _cons	(dropped) 35.04311 0622321 11.69393	35.77766 6.39897 6.40355	0.98 -0.01 1.83		-42.90972 -14.00439 -2.258206	112.9959 13.87993 25.64607			
sigma_u sigma_e rho	sigma_e .05254397								
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model									
H0: sigma(i)^2 = sigma^2 for all i									
abi2 (12)									

chi2 (13) = 751.11 Prob>chi2 = 0.0000 Wooldridge test for autocorrelation in pan

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 10.166 Prob > F = 0.0078

Table A46: Food products, beverages and tobacco (II) - population to replace Y4

. xtreg y y2 y3 lnpop, fe cluster(n)								
Fixed-effects Group variable			Number of Number of	fobs = fgroups =				
between	= 0.1707 n = 0.3768 L = 0.3757	Obs per g	group: min = avg = max =	10.0				
corr(u_i, Xb)	= -0.8967			F(3,12) Prob > F	=	4.43 0.0257		
			(Std. Err.	adjusted	for 13 clus	ters in n)		
У	Coef.	Robust Std. Err	. t	P> t	[95% Conf.	Interval]		
y2 y3 lnpop _cons	5.782799 55.32822 -1.256344 32.63267	3.163023 33.09638 .6127483 10.23967	1.83 1.67 -2.05 3.19	0.092 0.120 0.063 0.008	-1.108837 -16.78261 -2.591408 10.32236	12.67444 127.439 .0787199 54.94299		
sigma_u sigma_e rho	2.3014756 .04920333 .99954315	(fraction	n of varian	ce due to	u_i)			

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **175.91** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 11.580 Prob > F = 0.0052

Table A47: Light Manufacturing (I)

Fixed-effects Group variable	(within) regn e: n	ression		Number o Number o	fobs = fgroups =	
. betweer	= 0.0297 n = 0.0005 l = 0.0001			Obs per	group: min = avg = max =	10.0
corr(u_i, Xb)	= -0.0344	,	Ctal Face	F(2,12) Prob > F	= =	0.4401
		(Sta. Err.	adjusted	for 13 clus	ters in n)
У	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	[Interval]
y2 y3 y4 _cons	(dropped) 66.92723 9.647693 3.681615	50.54803 9.198491 9.204759	1.32 1.05 0.40	0.210 0.315 0.696	-43.20747 -10.3941 -16.37383	177.0619 29.68948 23.73706
sigma_u sigma e	1.0436492 .0957923 .99164573	(fraction	of varian	ce due to	u i)	

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **5511.60** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 6.378Prob > F = 0.0266

Table A48: Light Manufacturing (II) - population to replace Y4

. xtreg y y2 y3 lnpop, fe cluster(n)								
Fixed-effects Group variable		ression		Number o Number o	f obs = f groups =			
between	= 0.2080 n = 0.9364 l = 0.9271			Obs per g	group: min = avg = max =	10.0		
corr(u_i, Xb)	= -0.9974			F(3,12) Prob > F	=			
			(Std. Err.	adjusted	for 13 clus	ters in n)		
У	Coef.	Robust Std. Err	. t	P> t	[95% Conf.	Interval]		
y2 y3 lnpop _cons	2.719082 100.9967 -2.715938 58.72877	4.381684 46.40324 1.066738 17.83171	0.62 2.18 -2.55 3.29	0.546 0.050 0.026 0.006	-6.827788 1073077 -5.040161 19.8768	12.26595 202.1007 3917149 97.58074		
sigma_u sigma_e rho	3.7695317 .08691965 .99946859	(fraction	n of varian	ce due to	u_i)			

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **20649.15** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 5.798Prob > F = 0.0330

Table A49: Heavy Manufacturing (I)

. xtreg y y2 y3 y4, fe cluster(n)						
Fixed-effects (within) regression Group variable: n	Number of obs = 130 Number of groups = 13					
R-sq: within = 0.0530 between = 0.0125 overall = 0.0096	Obs per group: min = 10 avg = 10.0 max = 10					
corr(u_i, Xb) = 0.0756	F(2,12) = 1.79 Prob > F = 0.2087					
(Std. Err.	adjusted for 13 clusters in n)					
y Coef. Std. Err. t	P> t [95% Conf. Interval]					
y2 (dropped) y3 61.38328 33.046 1.86 y4 7.803894 6.740877 1.16 _cons 5.121202 6.742348 0.76	0.088 -10.61776 133.3843 0.270 -6.883215 22.491 0.462 -9.569112 19.81152					
sigma_u 1.1271793 sigma_e .06530569 rho .9966545 (fraction of variance due to u i)						
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model H0: sigma(i)^2 = sigma^2 for all i						

H0: sigma(i)^2 = sigma^2 for all i chi2 (13) = 2163.51 Prob>chi2 = 0.0000 Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 13.564Prob > F = 0.0031

Table A50: Heavy Manufacturing (II) - population to replace Y4

. xtreg y y2 y3 lnpop, fe cluster(n)								
					fobs = fgroups =			
R-sq: within = between = overall =	Obs per g	group: min = avg = max =	10.0					
corr(u_i, Xb) =	-0.9862			F(3,12) Prob > F	=			
			(Std. Err.	adjusted	for 13 clus	ters in n)		
У	Coef.	Robust Std. Err	. t	P> t	[95% Conf.	Interval]		
ý3	3414215 79.9594 -1.638868 40.32033	4.350725 27.44146 .7286853 12.18378	-0.08 2.91 -2.25 3.31		-9.820836 20.16959 -3.226537 13.77415	9.137993 139.7492 0511995 66.86651		
sigma_e	2.7336403 .06068477 .99950744	(fraction	n of varian	ce due to	u_i)			

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **456.75** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 13.096 Prob F = 0.0035

Table A51: Electricity, gas and water supply (I)

. xtreg y y2 y	y3 y4 y5, fe o	cluster(n)				
				Number o Number o	f obs = f groups =	
betweer	= 0.2932 n = 0.3980 l = 0.3921			Obs per	group: min = avg = max =	10.0
corr(u_i, Xb)	= -0.3329			F(3,12) Prob > F	=	
			(Std. Err.	adjusted	for 13 clus	ters in n)
У	Coef.	Robust Std. Err	. t	P> t	[95% Conf.	Interval]
y2 y3 y4 y5 _cons	(dropped) 167.4189 -14.78333 1.037758 13.09371	134.804 34.32633 .3914173 35.03086	1.24 -0.43 2.65 0.37		-126.2938 -89.57399 .1849326 -63.23199	461.1317 60.00732 1.890582 89.41941
sigma_u sigma_e rho	1.0201014 .23155369 .95099988	(fractio	n of varian	ce due to	u_i)	
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model H0: sigma(i)^2 = sigma^2 for all i chi2 (13) = 41722.91 Prob>chi2 = 0.0000						

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 25.396Prob F = 0.0003

Table A52: Electricity, gas and water supply (II) - population to replace Y4

. xtreg y y2 y	/3 lnpop y5, f	fe cluster(n)			
Fixed-effects Group variable		ression			f obs = f groups =	
. betweer	= 0.7159 n = 0.1065 l = 0.1036			Obs per	group: min = avg = max =	10.0
corr(u_i, Xb)	= -0.9958			F(4,12) Prob > F	=	
			(Std. Err.	adjusted	for 13 clus	ters in n)
У	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
y2 y3 lnpop y5 _cons	-29.32887 5.519625 13.10346 .2081023 -214.0661	10.99351 104.4741 2.226795 .2141403 36.42509	-2.67 0.05 5.88 0.97 -5.88	0.020 0.959 0.000 0.350 0.000	-53.28167 -222.1098 8.251685 2584693 -293.4296	-5.376074 233.1491 17.95523 .6746738 -134.7026
sigma_u sigma_e rho	13.043973 .14744217 .99987225	(fraction	of varian	ce due to	u_i)	

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **2832.38** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 25.580Prob > F = 0.0003

Table A53: Construction (I)

. xtreg y y2 y	y3 y4 y5, fe i	robust				
	Fixed-effects (within) regression Group variable: n					130 13
betweer	= 0.5451 n = 0.1965 l = 0.2057			Obs per	group: min = avg = max =	10.0
corr(u_i, Xb)	= -0.5383			F(3,12) Prob > F	=	
		(Std. Err.	adjusted	for 13 clus	ters in n)
У	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
y2 y3 y4 y5 _cons	(dropped) -47.18967 4.360879 .9673917 -2.20785	65.83421 10.79596 .3217963 9.087008	-0.72 0.40 3.01 -0.24	0.487 0.693 0.011 0.812	-190.6301 -19.1615 .2662577 -22.00674	96.25075 27.88326 1.668526 17.59104
sigma_u sigma_e rho	1.1208527 .17021871 .97745683	(fraction	of varian	ce due to	u_i)	
Modified Wald in fixed effec H0: sigma(i)^2	ct regression	model	oskedasti	city		

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **4288.57** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 1.062 Prob F = 0.3231

Table A54: Construction (II) - population to replace Y4

. xtreg y y2 y3 lnpop y5, fe robust							
				Number o Number o	fobs fgroups		
between	= 0.5669 = 0.7632 = 0.7043			Obs per	group: min = avg = max =	= 10.0	
corr(u_i, Xb)	= -0.9909			F(4,12) Prob > F	-	= 9.63 = 0.0010	
			(Std. Err.	adjusted	for 13 clus	sters in n)	
У	Coef.	Robust Std. Err	. t	P> t	[95% Conf	Interval]	
y2 y3 lnpop y5 _cons	3.919681 -16.589 -3.649449 1.189026 61.0255	19.00681 33.02559 5.122851 .5922804 80.08325	-0.50 -0.71	0.840 0.625 0.490 0.068 0.461	-37.4926 -88.54559 -14.81118 1014416 -113.4609	45.33196 55.36759 7.512284 2.479495 235.5119	
sigma_u sigma_e rho	4.1685117 .16682626 .99840091	(fractio	n of varian	ce due to	u_i)		

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **8134.55** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 0.848 Prob > F = 0.3752

Table A55: W/sale, Retail Trade; Hotels and Rest. (I)

. xtreg y y2 y	y3 y4 y5, fe n	robust					
Fixed-effects Group variable		ression		Number of Number of		= ps =	130 13
betweer	= 0.3857 n = 0.0766 L = 0.0897			Obs per g	group:	min = avg = max =	10 10.0 10
corr(u_i, Xb)	= -0.3298			F(3,12) Prob > F		= =	22.93 0.0000
			(Std. Err.	adjusted	for 1	3 clust	ters in n)
у	Coef.	Robust Std. Err	. t	P> t	[95%	Conf.	Interval]
y2 y3 y4 y5 _cons	(dropped) 77.53143 14.88023 .5660977 -8.416104	81.46885 18.35249 .1333706 18.19901	0.95 0.81 4.24 -0.46	0.360 0.433 0.001 0.652	-99.9 -25.1 .275 -48.0	0642 5081	255.0368 54.86687 .8566873 31.23613
sigma_u sigma_e rho	1.0183462 .21391487 .95773915	(fractio	ı of varian	ce due to	u_i)		
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model H0: sigma(i)^2 = sigma^2 for all i							
		n all 1					
chi2 (13) = Prob>chi2 =	65624.57 0.0000						
Wooldridge tes H0: no first-o			in panel da	ta			

H0: no first-order autocorrelation F(1, 12) = **1046.216** Prob > F = **0.0000**

Table A56: W/sale, Retail Trade; Hotels and Rest. (II) - population to replace Y4

. xtreg y y2 y	/3 lnpop y5, f	fe robust				
Fixed-effects Group variable		ression		Number o Number o	of obs = of groups =	
betweer	= 0.4010 n = 0.8342 L = 0.7562			Obs per	group: min = avg = max =	10.0
corr(u_i, Xb)	= -0.9909			F(4,12) Prob > F		
			(Std. Err.	adjusted	d for 13 clus	ters in n)
У	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
y2 y3 lnpop y5 _cons	-2.750414	16.05847 55.94763 1.638235 .1564379 26.17944	-0.51 1.52 -1.68 4.22 1.96	0.621 0.154 0.119 0.001 0.073	-43.13613 -36.8494 -6.319822 .3186303 -5.605128	26.84067 206.9494 .8189943 1.000328 108.4751
sigma_u sigma_e rho	3.4565356 .21217494 .99624619	(fraction	n of varian	ce due to	o u_i)	

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (13) = **2.7e+06** Prob>chi2 = **0.0000**

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 12) = 955.471Prob > F = 0.0000