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Abstract

The paper analyzes the detection and estimation of multiple level shifts regardless of the
order of integration of the time series. We show that it is possible to extend the sequential
testing procedure of Bai and Perron (1998) to the I(1) non-stationary case so that a uni�ed
framework based on this approach can be applied. The performance of the test statistic is
carried out, establishing a comparison with other existing proposals in the literature.
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1 Introduction

The assessment of the order of integration of time series requires the use of test statistics that
take into account features that can bias the persistence of the recurrent shocks that a¤ect the
time series. One of these features is the existence of structural breaks, i.e., shocks that are not
recurrent but that have a large e¤ect on the time series.

Perron (1989) noticed that the inference drawn from the Dickey-Fuller (DF) test statistic
can be seriously plagued if the presence of structural breaks is not accounted for. This situation
is due to the dependence shown by the limiting distribution of the unit root tests statistics on
the type, number and position of the structural breaks �see Perron (1989, 1990), Perron and
Vogelsang (1992) and Montañés and Reyes (1998). In this paper, we focus on one particular
type of structural breaks, i.e., the ones that only a¤ect the level of the time series. Perron
(1990) shows that the limiting distribution of the DF test statistic is invariant to level shifts of
�xed magnitude, although not accounting for such level shifts can a¤ect the empirical power of
the unit root test statistics. However, the empirical power can also be a¤ected if irrelevant level
shifts are speci�ed when computing the unit root tests. Consequently, the key question is how
to assess the presence of structural breaks a¤ecting the level of the time series, regardless of its
order of integration.

There are di¤erent proposals in the literature that address this issue. Perron and Yabu
(2009) consider one structural break for trending time series, with three di¤erent types of
e¤ects �change in the level (Model I), in the slope (Model II) or both (Model III). Saygindoy
and Vogelsang (2011) cover the three models in Perron and Yabu (2009), but also consider the
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case of non-trending variables. Kejriwal and Perron (2010) generalize the proposal in Perron
and Yabu (2009) to multiple structural breaks, but just focusing on Model II and Model III �
i.e., they do not cover the case of structural breaks a¤ecting only the level of the time series.
Finally and to the best of our knowledge, Harvey, Leybourne and Taylor (2010) is the only
proposal in the literature that deal with the case of multiple level shifts.

In this paper we focus on the issues of testing and estimation of multiple level shifts for
non-trending time series, regardless of the order of integration of the stochastic process. Our
proposal follows Bai and Perron (1998), where a sequential testing procedure is designed for I(0)
stationary processes, but extending their methodology to the I(1) non-stationary framework.

The paper is organized as follows. Section 2 presents the model that allows for the presence
of multiple level shift in I(1) non-stationary processes. Section 3 designs the statistic that is used
to test the presence of level shifts in a sequential procedure. Section 4 deals with the estimation
of the break dates. Section 5 investigates the �nite sample performance of the proposed test
statistic, and comparing it with other proposals available in the literature. Finally, Section 6
concludes with some remarks. The proofs are collected in the appendix at the end of the paper.

2 The model

Let it fytgTt=1 be a stochastic process with the data-generating process (DGP) given by:

yt =
mX
j=1


jDUj;t + ut (1)

ut = �ut�1 + "t; (2)

with � = 1 and u0 = Op (1). The structural breaks are modeled through the de�nition of the
dummy variables DUj;t = 1 for t > b�jT c , 0 otherwise, where b�c denotes the integer value of
the quantity between parenthesis, �j 2 � (�), j = 1; : : : ;m, are the break fractions, and � (�)
is a closed subset in (0; 1) that de�nes the admissible values of the break fractions. Finally, we
assume that "t is a stochastic process that satis�es the following conditions.

Assumption: "t = C (L) �t with � (L) =
P1
j=0CjL

j with C (1)2 > 0 and
P1
j=0 j jCj j <1,

where f�tgTt=1 is an iid sequence of with mean zero, variance �2� and �nite fourth moment. The

long-run variance of "t is given by �2 = limT!1 T�1E
�PT

t=1 "t

�2
= �2�C (1)

2.

The magnitude of the level shifts are de�ned as:


j = 
�jT
1=2; (3)

where here T 1=2 is the Pitman�s drift and
���
�j ��� <1, j = 1; : : : ;m. It is worth mentioning that

the de�nition of the break magnitude using (3) is important to avoid having structural breaks
with negligible e¤ects in the limit. This also implies that a consistent estimation of the break
dates can be obtained, something that is not possible if the magnitude of the breaks is �xed
and the stochastic process is I(1).

3 Test statistic

As mentioned above, this paper follows the sequential approach in Bai and Perron (1998) to
test the presence of multiple level shifts for I(1) non-stationary processes. Let us consider the
rescaled sum of squared residuals (RSSR) computed using the vector of break points T 0 =�
T 01 ; T

0
2 ; : : : ; T

0
m

�0
RSSR

�
T 0
�
= T�2

24 T 01X
t=1

ŷ2t + � � �+
T 0iX

t=T 0i�1+1

ŷ2t + � � �+
T�1X

t=T 0m+1

ŷ2t

35 ;
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where the 0 supscript denotes the true break dates. Further, de�ne the rescaled sum of squared
residuals where an additional break is considered in the i-th segment

RSSR
�
T 0; �

�
= T�2

24 T 01X
t=1

ŷ2t + � � �+
�X

t=T 0i�1+1

ŷ2t +

T 0iX
t=�+1

ŷ2t + � � �

+ � � �+
T�1X

t=T 0m+1

ŷ2t

35 :
The null and alternative hypothesis in which we are interested in are�

H0 : m structural breaks
H1 : m+ 1 structural breaks

;

so that it is possible to proceed in a sequential fashion testing the null hypothesis of no structural
break (m = 0) against the alternative hypothesis of one structural break (m = 1). If the null
hypothesis is rejected, we can proceed testing in a second stage the null hypothesis of m = 1
against the alternative hypothesis of m = 2, and so on. The sequential testing stops when the
null hypothesis cannot be rejected.

Following Bai and Perron (1998) we de�ne the test statistic:

FT (m+ 1jm) = �̂�2
�
T�2SSR

�
T 0
�
� min
1�i�m+1

min
�=T2�i(�)

T�2SSR
�
T 0; �

��
(4)

= max
1�i�m+1

max
��2�i(�)

24T�2�̂�2
24 T 0iX
t=T 0i�1+1

ŷ2t �
�X

t=T 0i�1+1

ŷ2t �
T 0iX

t=�+1

ŷ2t

3535 ;
with �i (�) = f(�i�1; �� ; �i) ; j�� � �j j � � (j = i� 1; i)g, �� = �=T , � being the trimming, �̂2 a
consistent estimate of the long-run variance of "t, and where ŷt denotes the OLS detrended vari-
able that is obtained from the estimation of (1). The limiting distribution of the FT (m+ 1jm)
test statistic given in (4) is given in the following Theorem.

Theorem 1 Let yt be a stochastic process with the DGP given by (1) and (2). Under the null
hypothesis that there are m structural breaks with T 0 =

�
T 01 ; T

0
2 ; : : : ; T

0
m

�0, the FT (m+ 1jm) test
statistic given in (4) converges as T !1 to

FT (m+ 1jm) ) sup
1�i�m+1

sup
��2�i(�)

24Z �0i

�0i�1

 
W (r)� 1

�0i � �0i�1

Z �0i

�0i�1

W (s) ds

!2
dr

�
Z ��

�0i�1

 
W (r)� 1

�� � �0i�1

Z ��

�0i�1

W (s) ds

!2
dr

�
Z �0i

��

 
W (r)� 1

�0i � ��

Z �0i

��

W (s) ds

!2
dr

35 ; (5)

where ) denotes weak convergence to the associated measure of probability and W (r) is a
standard Brownian motion.

The proof is given in the appendix. As can be seen, the limiting distribution depends on the
number of structural breaks and the position of the structural breaks that is speci�ed under the
null hypothesis. In Table 1 we report the asymptotic critical values for the null hypothesis of no
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structural break when the trimming is set at � = 0:15. These critical values are computed using
Monte Carlo simulations with 300 steps to approximate the Brownian motions of the limiting
distribution and 50,000 replications.

Harvey et al. (2010) propose an alternative approach based on the generalized �uctuation
test statistics. These authors consider the same DGP de�ned above but distinguishing between
two di¤erent break magnitude speci�cations, depending on whether the time series is I(0) or
I(1):


j =

(

�jT

�1=2 j�j < 1

�jT

1=2 � = 1
;

and propose to use the generalized �uctuation tests:

S0 = ��1u T 1=2 max
t=T2�(�)

Pbw2 Tc
i=1 yt+i �

Pbw2 Tc
i=1 yt�i+1�

w
2 T
� (6)

S1 = ��1T�1=2 max
t=T2�(�)

Pbw2 Tc
i=1 yt+i �

Pbw2 Tc
i=1 yt�i+1�

w
2 T
� ; (7)

where S0 is the test statistic to be computed when the time series is I(0) and S1 when the time
series is I(1). As can be seen, the S0 and S1 are similar, although they di¤er in two key issues.
First, in the computation of the S0 statistic we require the estimation of the variance of ut in
(2), whereas when computing the S1 statistic we need to compute the long-run variance of "t.
Second, S0 is rescaled by T 1=2 whereas S1 uses T�1=2. Another key element of the computation
of these statistics is the bandwidth w that is used to compare the averages of the two segments,
since the critical values that are required to perform the statistical inference depends on w.
Harvey et al. (2010) show that the larger w the lower the empirical power of the test statistics,
suggesting a value of w = 0:10 for empirical purposes.

4 Estimation of the break points

So far, we have assumed that the break points are known a priori, although this situation is
rarely found in practice. In general situations, it would be desirable to design a procedure to
estimate the break dates in consistent way. In order to do so, we suggest specifying the model
in (1) in �rst di¤erence:

�yt =
mX
j=1


jD (Tj)t + vt t = 2; : : : ; T; (8)

where

D (Tj)t =

�
1 t = Tj + 1
0 otherwise

; j = 1; : : : ;m:

Estimate the multiple break points through the minimization of the sum of squared residuals
(SSR) of the model so that�

T̂1; T̂2; : : : ; T̂m

�
= argmin
(T1;T2T;:::;Tm)2T�

SSR (T1; T2; : : : ; Tm) ;

which renders consistent estimates of the break points i¤ �see Harvey et al. (2010)


j = 
�jT
1=2:

Using the consistent estimates of the break points, we can proceed to compute the FT (m+ 1jm)
test statistic and use the critical values that have been computed assuming that the structural
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breaks are known. It is worth mentioning that the estimation of the long-run variance �2 is
performed as in Harvey et al. (2010), i.e., we estimate (8) with m = mmax, where mmax denotes
the maximum number of structural breaks that the whole analysis is going to consider, and
then estimate the model by OLS

�v̂t = �v̂t�1 +
k�1X
j=1

 j�v̂t�j + et;

t = k + 2; : : : ; T , and compute �̂2e = (T � 2k � 1)�1
PT
t=k+2 ê

2
t , with k selected so that it

satis�es that as T !1, 1=k+k3=T ! 0 �for instance, the modi�ed information criteria in Ng
and Perron (2001) and Perron and Qu (2008) can be used to choose k. Finally, the long-run
variance is obtained as �̂2 = �̂2e=�̂

2. Allowing for the maximum number of structural breaks
when computing the long-run variance avoids obtaining a biased long-run variance estimate
due to unaccounted structural breaks in the case that there are more structural breaks than the
ones considered under the null hypothesis of each step of the sequential testing procedure. This,
however, comes at the price of loosing power, if more structural breaks than the true number
are speci�ed when estimating (8).

5 Monte Carlo simulation

In this section we analyze the �nite sample performance of the test statistic that has been
proposed in this paper and compare it with the test statistic in Harvey et al. (2010). The
simulations cover both the cases where the stochastic process is I(0) and I(1). Let us de�ne the
DGP:

yt = 
DUt + ut

ut = �ut�1 + "t;

where u0 = 0, "t � iid N
�
0; �2"

�
, �2" = 1 and � = 1 for the I(1) case and � = 0:8 for the I(0)

case. We consider the situation where there is one structural break located in the middle of the
sample, T1 = b0:5T c, specifying di¤erent sample sizes T = f50; 100; 200; 300; 500; 1000g. As for
the magnitude of the level shift we de�ne two di¤erent set of values according to whether yt is
I(0) or I(1):


 =

�

� if yt � I (0)


�T 1=2 if yt � I (1)
;

with 
� = f0; 1; 5; 10g. As can be seen, when yt � I (0) the magnitude of the structural break
is �xed, where it increases with the sample size when yt � I (1). The nominal size is set at the
5% level of signi�cance and 1,000 replications are conducted.

Before addressing the performance of the test statistic, we focus on the estimation of the
break date using the procedure discussed above. Figures 1 and 2 present the densities of
the estimated break fraction for 
 = 5 and 
 = 10, respectively, each T . As can be seen,
the densities are symmetric and placed around the true value of the break fraction (� = 0:5)
regardless of the order of integration of the time series. As can be seen, the distribution becomes
more concentrated around the true break fraction as the sample size increases. Further, such
probability mass concentration increases with the magnitude of the structural break.

Table 2 reports the empirical size of the FT (1j0) test statistic when yt � I (0) �henceforth,
BP test �and when yt � I (1) �henceforth, CG test. As can be seen, both the BP and CG
test statistics have the correct size under the respective null hypothesis for all sample sizes that
we have considered. When yt � I (1), the BP test statistics leads to a clear rejection of the
null hypothesis, indicating that the time series is non-stationary. This is not surprising, since
in the limit an I(1) process can be interpreted as an stochastic process with in�nite structural
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changes. When yt � I (0), the CG test statistic converges to zero, something to be expected
from the rescaling factor that is associated with this test statistic.

Table 3 focuses on the empirical power of the BP and CG test statistics, compared with the
S1 and S0 test statistics in Harvey et al. (2010) �S1 refers to the test statistic that detects
the presence of level shifts when the time series is I(0) and S0 when the time series is I(0)
for di¤erent break magnitudes. Let us �rst focus on the results for 
� = 1. As can be seen,
when yt � I (1), the S1 outperforms the CG statistic in terms of empirical power, although the
empirical power of both statistics tends to the nominal size as T gets large. This is something
to be expected, provided that in this setup we consider the magnitude of the structural break to
be �xed, i.e., in the limit the structural break is negligible. The empirical power of the S0 test
statistic tends to zero as T increases, a feature that is used by Harvey et al. (2010) to design a
union test �the U test. Finally, the BP test statistic shows high values for the empirical power
due to the size distortions of this statistic when the time series is I(1). On the other hand,
when yt � I (0), the BP statistic outperforms the S0 and U tests, whereas the empirical power
of both the CG and S1 tends to zero.

Similar picture is obtained if the magnitude of the structural breaks depends on the sample
size. When yt � I (1), the S1 and U tests outperform the CG statistic, but now the S0 test
statistic does not tend to zero, so that the proposal of the U test might be compromised �as
mentioned above, Harvey et al. (2010) exploited the feature that the S0 test statistic tends to
zero in this case to design the U statistic. When yt � I (0), the empirical power of the BP, S0
and S1 statistics tend to one, whereas the empirical power of the CG tends to zero.

Finally, it should be mentioned that increasing the magnitude of the 
� parameter to either
5 or 10 does not change the qualitative results of the empirical power analysis, showing that
the performance of the statistics is driven by whether the magnitude of the structural break is
�xed or increasing with T .

The results that have been obtained in this Monte Carlo simulation reveals that the combined
use of the BP and CG test statistics can lead us to better characterize the stochastic properties
of time series. If the null hypothesis is rejected by both test statistics, we can conclude that the
time series is an I(1) that has been a¤ected by level shifts. If the null hypothesis is not rejected
by either test statistics, we can conclude that the stochastic process is I(0) with no structural
breaks. When the null hypothesis is rejected with the BP test statistic, but not by the CG
statistic, then we can conclude that the time series is I(1) with no structural breaks. This sort
of analysis could also be carried out using the HLT test statistics, although the behavior of the
S0 test statistic di¤ers from what the authors used to propose a union test when yt � I (1) and
the magnitude of the structural break is not �xed.

6 Conclusions

The paper extends the sequential testing procedure in Bai and Perron (1998) to estimate the
number and position of multiple level shifts a¤ecting I(1) non-stationary processes. Our proposal
allows to get a uni�ed framework where the same sequential testing procedure can be used to
detect the presence of multiple level shifts regardless of the order of integration of the time
series. The limiting distribution of the test statistic that is proposed in this paper is shown
to depend on the number and position of the structural breaks that are imposed under the
null hypothesis, so speci�c critical values need to be used in each step of the sequential testing
procedure.

The simulation experiment that is conducted compares our proposal with other test statistics
available in the literature. We show that in some cases our approach is encompassed by the
compiting test statistics, although the behaviour of our test statistic is not a¤ected by the
assumption made on the magnitude of the structural breaks �which can be either �xed or
depending on T �whereas this is not the case for other existing tests.
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A Appendix

A.1 Proof of Theorem 1

Let us �rst focus on the limit of the expression

A
�
T 0i�1; T

0
i

�
= T�2�̂�2

24 T 0iX
t=T 0i�1+1

ŷ2t �
�X

t=T 0i�1+1

ŷ2t �
T 0iX

t=�+1

ŷ2t

35 :
The �rst element of A

�
T 0i�1; T

0
i

�
is given by where

T�2�̂�2
T 0iX

t=T 0i�1+1

ŷ2t = T�2�̂�2
T 0iX

t=T 0i�1+1

0@yt � 1

T 0i � T 0i�1

T 0iX
t=T 0i�1+1

yt

1A2 :
Provided that yt � I (1), T�1=2yt ) �W (r) so that by the functional Central Limit Theo-

rem (FCLT)
�
T 0i =T � T 0i�1=T

��1
T�3=2

PT 0i
t=T 0i�1+1

yt ) � (�i � �i�1)�1
R �i
�i�1

W (s) ds. Conse-

quently, we have

T�2�̂�2
T 0iX

t=T 0i�1+1

ŷ2t )
Z �i

�i�1

 
W (r)� 1

�i � �i�1

Z �i

�i�1

W (s) ds

!2
dr:

The same applies to the other two elements of A
�
T 0i�1; T

0
i

�
so that we obtain

A
�
T 0i�1; T

0
i

�
)

Z �0i

�0i�1

 
W (r)� 1

�0i � �0i�1

Z �0i

�0i�1

W (s) ds

!2
dr

�
Z ��

�0i�1

 
W (r)� 1

�� � �0i�1

Z ��

�0i�1

W (s) ds

!2
dr

�
Z �0i

��

 
W (r)� 1

�0i � ��

Z �0i

��

W (s) ds

!2
dr:

Finally, by the FCLM theorem, we obtain

FT (m+ 1jm) ) sup
1�i�m+1

sup
��2�i(�)

24Z �0i

�0i�1

 
W (r)� 1

�0i � �0i�1

Z �0i

�0i�1

W (s) ds

!2
dr

�
Z ��

�0i�1

 
W (r)� 1

�� � �0i�1

Z ��

�0i�1

W (s) ds

!2
dr

�
Z �0i

��

 
W (r)� 1

�0i � ��

Z �0i

��

W (s) ds

!2
dr

35 :
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Table 1: Percentiles of the limiting distribution of the F (mjm+ 1) test statistic under the null
hypothesis of m structural breaks

m 90% 95% 97.5% 99%
0 0.2715 0.3710 0.4763 0.6105

Table 2: Empirical size (
� = 0) of the Bai and Perron (BP) and Carrion-i-Silvestre and Gadea
(CG) test statistics

I(1) I(0)
T CG BP CG BP
50 0.033 0.889 0 0.110
100 0.036 0.900 0 0.073
200 0.047 0.913 0 0.052
300 0.036 0.909 0 0.053
500 0.048 0.907 0 0.043
1000 0.040 0.913 0 0.042
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Table 3: Empirical power of the Harvey, Leybourne and Taylor (HLT), BP and CG test statis-
tics, with w = 0:10


� = 1 
� = T 1=2

I(1) I(0) I(1) I(0)
HLT HLT HLT HLT

T S1 S0 U CG BP S1 S0 U CG BP S1 S0 U CG BP S1 S0 U CG BP
50 0.52 0.29 0.57 0.12 0.87 0.02 0.15 0.16 0 0.82 0.98 0.76 0.99 0.44 0.92 1 1 1 0.64 1
100 0.12 0.04 0.14 0.09 0.87 0 0.06 0.06 0 1 0.97 0.58 0.98 0.41 0.87 1 1 1 0.20 1
200 0.09 0.01 0.10 0.05 0.89 0 0.17 0.17 0 1 0.98 0.45 0.98 0.39 0.92 1 1 1 0.05 1
300 0.08 0.01 0.09 0.03 0.94 0 0.26 0.25 0 1 0.99 0.46 0.99 0.36 0.95 1 1 1 0.01 1
500 0.06 0 0.06 0.04 0.93 0 0.52 0.52 0 1 1 0.38 1 0.32 0.93 1 1 1 0.02 1
1000 0.06 0 0.06 0.05 0.93 0 0.95 0.95 0 1 0.98 0.41 0.98 0.31 0.96 1 1 1 0 1


� = 5 
� = 5T 1=2

I(1) I(0) I(1) I(0)
HLT HLT HLT HLT

T S1 S0 U CG BP S1 S0 U CG BP S1 S0 U CG BP S1 S0 U CG BP
50 0.86 0.60 0.87 0.25 0.90 0.92 0.94 0.95 0.20 1 1 1 1 1 1 1 1 1 1 1
100 0.54 0.15 0.55 0.16 0.91 0.75 0.97 0.97 0 1 1 1 1 1 1 1 1 1 1 1
200 0.28 0.03 0.28 0.06 0.92 0.43 0.97 0.97 0 1 1 0.98 1 1 1 1 1 1 1 1
300 0.12 0.00 0.12 0.06 0.89 0.25 0.99 0.99 0 1 1 0.99 1 1 1 1 1 1 1 1
500 0.12 0.01 0.12 0.05 0.88 0.10 0.97 0.97 0 1 1 1 1 1 1 1 1 1 1 1
1000 0.08 0 0.08 0.06 0.95 0.01 0.96 0.96 0 1 1 0.98 1 1 1 1 1 1 1 1


� = 10 
� = 10T 1=2

I(1) I(0) I(1) I(0)
HLT HLT HLT HLT

T S1 S0 U CG BP S1 S0 U CG BP S1 S0 U CG BP S1 S0 U CG BP
50 1 0.87 1 0.69 1 1 1 1 0.97 1 1 1 1 1 1 1 1 1 1 1
100 0.97 0.58 0.98 0.41 0.87 1 1 1 0.20 1 1 1 1 1 1 1 1 1 1 1
200 0.81 0.24 0.82 0.19 0.94 1 1 1 0 1 1 1 0.99 1 1 1 1 1 1 1
300 0.53 0.07 0.52 0.19 0.87 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
500 0.34 0.04 0.35 0.10 0.86 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
1000 0.16 0.01 0.17 0.07 0.90 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
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Figure 1: Densities of the break dates estimates, 
� = 5
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Figure 2: Densities of the break dates estimates, 
� = 10
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