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Abstract

: This paper aims to test the best model volatility forecasting using daily returns sample
from Brazilian and US stock markets. This information is useful to portfolio managers and
Central Bankers seeking to understand possible effects of policy interventions in financial
markets. The period covered is from January of 2002 to December of 2007. The motivation
to test the forecasting potency of these models comes from Engle, Patton et al. (2001),
where a good volatility model must be able to predict. The path followed was the same of
Cavaleri (2008) and Kuester, Mittnik e Paolella (2006). The sample period is from January
of 2002 to December 2007. Using Garch Family models and VaR. The results suggest most
of the models behave badly in a time of transition as preceded by the subprime crisis. The
best models to predict one-step-ahead conditional variance were parsimonious iGARCH
and standard GARCH models to both countries. The distribution of returns considered
was crucial in results of backtesting.

Keywords: GARCH, Forecasting Volatility, VaR Backtesting, Subprime Crisis, Market
Risk.

1 Introduction
The world is flat was the title of Thomas Friedman’s book in 2004. The world would

discover that it was not that true few years ahead. The concern of this paper is to realize if risk
models were able to make financial risk managers aware of the realized risk in this period. Thus,
the question to answer here is: how is the suitability of these models in transition times?

The ambition here is not to investigate if these volatility estimations or forecasting was
able to predict the financial crisis. In fact, the main function of these measures have been to
assess risk management and decision-making about asset allocation. The period that preceded
the sub-prime crisis is featured by low volatility and to a policy of low interest rates implemented
by FED since 1998 (ALEXANDER, 2008). Actually, is evidenced that high volatility does
not preceed financial crisis in the real economu. Danielsson, Valenzuela e Zer (2016) built
a cross-country database of 211 years time span to encounter evidences on the relationship
between volatility and financial crisis. The linkage between volatility and the real economy is a
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negative. Apparently, low volatility incentives economic agents to establish a risk-taking posture,
endogenously affecting the likelihood of future shocks.

Of course, market risk is not trivial to observe. Even though mean-variance analysis
assumptions have been relaxed since Markowitz (1952) towards risk measurement, it is still a
difficult task. Danielsson (2011) is emphatic when he points out: “Financial risk is a forecasting,
not a measurement”. Christoffersen e Diebold (2000) state good arguments suggesting the fast
decaying predictability of these measures when time horizon becomes longer.

Since Mandelbrot (1963) evidenced the presence of fat tails in financial time series,
measures such Value-at-Risk or other methods as conditional heteroscedasticity have been used
widely in academia and by practitioners. This tendency is still in course, as we observe in the
recent literature production, there are methods trying .

Mabrouk (2016) evaluate the daily conditional volatility and h-step-ahead Value-at-Risk
(VaR) using long memory GARCH family methods. The exercise is done with the indexes:
Nasdaq100, Dow Jones, S&P 500, DAX30, CAC40, FTSE100 and Nikkei225. Skewed Student –
t FIAPARCH(1,d,1) model provides more accurate one-day-ahead VaR forecasts than using 5
or 15-day-ahead.

Haugom e Ullrich (2012) used derivatives to improve volatility forecasting of spot
electricity market, splitting it in continuous and jump components. The authors introduced the
term forward realized volatility calculated from one-day-ahead forward, and used the implied
volatility to feed up their model when compared to naïve measures.

For instance, some innovative method overcome the errors of GARCH models. Krist-
janpoller e Minutolo (2015) uses Artificial Neural Network with GARCH models to forecast
prices of gold of spot and futures. They accomplished better results than conventional GARCH
forecasting for forecasts of 14-day-ahead and 18-day-ahead.

Algorithmics methods have also been used as well to improve volatility forecasting.
Sermpinis et al. (2015) introduces a RG-SVR model for optimal parameter selection and
identifies the optimal features of the series, finally providing a combination between them. This
approach proved itself, also profitable in trading applicantions.

Implications of combination of volatilities precision is also in Cavaleri (2008). The author
uses unconditional, conditional variance and stochastic volatility models and their combination.
The combination using an OLS method presented better results than the other combinations
and univariate models.

Kuester, Mittnik e Paolella (2006) systemically presents the literature of the theme.
Doing a broad empirical exercise of forecasting using a wide number of models and, distributions
to forecast VaR. Combining heavy tailed GARCH specification combined with an Extreme
Value Distribution (EVT) presented the best results.

Some applications uses CAViaR model in order to avoid subadditivity problem of a
VaR. Drakos, Kouretas e Zarangas (2015) aims to test the performance of alternative CAViaR
specifications, splitting the sample in before, during and after the financial crisis. The authors
find a relatively better performance than conventional VaR models.

An application to Brazil is found in Gaio et al. (2015), whose results suggest that models
based on EVT and GPD distributions proved robust in calm and crisis periods.

The objective of this paper is to contribute to the literature of risk forecasting presenting
how conditional models based in different specifications and distributions behave in times of
transition to Brazil (i.e reference to an emerging market) and USA (i.e reference to a developed
market). The methodology used follows Kuester, Mittnik e Paolella (2006) in the backtests
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used and Cavaleri (2008) in the estimation procedure. The period covered relatively calm, going
from 2002 to 2008. To deliver the results proposed, are used GARCH family models to predict
conditional variance and VaR using different distributions of returns, such: Normal, Skewness –
Normal, t-Student, Skewness t-Student, GED, Skewness GED and JSU.

Besides the former section, the work is divided in four sections. The next present data
features. The third section presents the methodology used. In the fourth section, can be accessed
the results. Finally, the fifth section presents concluding remarks.

2 Methodology
2.1 Risk:Definition and Measurement

Investment decisions occur in scenarios surrounded by uncertainty. Naturally, based
on their preferences the investor seeks for utility maximization. Hence, they will attempt to
maximize returns while minimize risk.

In contrast, market risk is not easily measured. In ??) definition, “financial risk is a
forecasting, not a measurement”. Its provocative statement is based on the wide set of factors
to control, in order to measure risk effectively. Financial risk, differently of return movements,
is not easily seen. Therefore, statistical inference methods are applied on price movements in
order to obtain fitted estimations of risk (DANÍELSSON, 2011).

When Markowitz (1952) introduced the mean-variance analysis, introduced the trade-off
between risk and return. One of his main breakthrough was a shift of the definition of markets
risk from a bunch of subjective information, to standard-deviation measure 3.

For shore, price oscillations, or market risk just matters in a time dimension. While
time advances, the expected deviation on wealth portfolio affects investor’s satisfaction. Thus,
a measure of risk based on compounding standard deviations is desirable to feed managers
portfolio analysis 4.

The trivial way to forecast volatility is to measure it in a moving average standard
deviation. Where the last observation is excluded and the new introduced in the measure at
the pace time advances. A more formal definition is given in Hull (2006) would be the average
standard deviation of annualized diary returns. Called historical volatility σ:

σ =
√

1
n− 1

n∑
i=1

u2
i −

1
n(n− 1)(

n∑
i=1

ui)2 (1)

The biggest challenge faced by using a moving average volatility model is to use the right
window of observations. A large one, could imply in unnecessary information (HULL, 2006). A
short one, would imply in a two unstable measure of volatility. Hence, its measure can easily
be unbiased. Moreover, an unconditional measure cannot model clusters adequately, and very
sensible to extreme outcomes, as well.

To minimize the effect of an extreme event biasing the average, practitioners use the
risk metrics approach. It consists of an Exponential Weighted Moving Average (EWMA),
where the last observations are more important when measuring the risk. The importance
3 Other important aspects of his framework is the quadratic form of utility functions. He also introduces an

important intuition to practitioners, in a well-diversified portfolio, co-movements risk is what matters. His
assumptions over distribution of returns and innovations proposed to fulfill the gaps of risk measurement in
the text advancement.

4 A broader discussion about volatility as a risk measure is found in Daníelsson (2011) and Hull (2006).
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of the observations is exponential decaying. Therefore, forecasting generated by an EWMA
model give less importance to irrelevant information, improving the accuracy of the estimation
(ALEXANDER, 2008).

Formalizing:

EWMA(rt−1, · · · , x1, λ) = rt−1 + λrt−2 + λ2rt−3 + · · ·+ λt−2r1

1 + λ+ λ2 + · · ·+ λt−2
(2)

Where,λ , is the constant 0 < λ < 1, that will smooth the impact of old information.
Given that asymptotically, n→∞, lambda tends to zero (λn → 0). Where:

1 + λ+ λ2 + · · · = (1− λ)−1 (3)

When time (t), becomes longer:

σ2 = (1− λ)
∞∑
i=1

λi−1r2
t−i (4)

Given the fact λ is constant and the same to every asset, EWMA models have their
forecasting precision deepened. Although, they are easily used for practitioners and in applications
of multivariate estimation.

Summing up, unconditional volatility measures are sensitive to extreme outcomes.
Additionally, they present some problems when investors take decisions based on them. Daníelsson
(2011) gives an intuitive example showing that assets that behaves differently, can have the
same mean-variance measures, in other words, they have the same position in the trade-of line.
Thus, decision taking based on volatility can be misleading.

On the other hand, Value-at-Risk (VaR) measures present ease in implementation and
backtesting. As Jorion (1997) points out, VaR as an statistical risk measure of potential losses.
Financial risk managers using it as a risk measure and managing the risk exposure, in a
determined horizon time and based on a particular significance level justifies its applicability 5.

The 100α% h-day is a more formal definition to the loss amount that could be exceeded
by a probability α, in a frozen portfolio over the next h days. Therefore, a quantile estimation
α of a random variable xht,α over h-day of profits and losses distribution:

P (BhtPt+h˘Pt < xht,α) = α (5)

VaR can be estimated from a time series return distribution, when this happens is
expressed as a percentage of portfolios (Q) value. Defining VaR by an h-day return of a portfolio
(random variable), it can be expressed as

Qht = BhtPt+h˘Pt
Pt

(6)

P (Qht < xht,α) = α (7)
5 VaR has to present some axioms to be considered a coherent risk measure, such: i) Monotonicity;

ii)Subadditivity; iii) Positive Homogeneity; and, iv) Translation invariance. Depending on the applica-
tion, one of them can be violated. This paper does not aims to discuss the theoretical features of the model.
A complete discussion is found in Artzner et al. (1999), Alexander (2008) and Daníelsson (2011)
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2.2 Conditional Volatility Models
Since Mandelbrot (1963) showed the presence of clusters in cotton time series: returns tend

to peak, driving a behavior of high volatility being preceded by low volatility. The simplifying
hypothesis of normal distributions are widely criticized, the distance of the theoretical framework
used to reality is faced as problem. These measures of risk are useful upon the normal distribution
hypothesis (multivariate normal distribution when a portfolio).

The response from academia came first from Engle (1982), whose work concern was in the
adequacy of financial series to time-varying behavior. Building a functional form that introduces
the lagged innovation in the set of information to explain variance, he models a conditional
variance behavior. His paper introduces the Autorregressive Conditional Heteroskedasticity
(ARCH).

As Tsay (2005) highlights, shocks dynamics in stock markets are serially not correlated.
However, the square root of residuals is linearly dependent. Thus, the quadratic form of
innovation term is desirable to estimate volatility on markets. The intuition about ARCH
models suggest that modelling their squared residuals is possible to explain the conditional
variance:

(εΦt−1) = σtut, ut ∼ i.i.d(0, 1) (8)

σ2
t = w +

q∑
i=1

αi (9)

ε2
t−1 = wαi(Lq) (10)

(εΦt−1) is the set of information, φ, until t−1. The term, ε, is independent and identically
distributed. Therefore, it is asymptotically are normally distributed. w represents the intercept;
σ2
t the conditional variance;αi is the parameter of the model; ε2

t is the quadratic form of residuals;
and, (L) is the lag operator:α(L) = α1(L) + α2(L2) + +αi(Lq).

Bollerslev (1986) simplifies the ARCH framework, generalizing the specification of the
model – analogously as the passage from an AR, to and ARMAmodel. Developing the Generalized
ARCH (GARCH), the number of parameters are reduced; hence, the model parsimoniously
explains conditional variance. Formally, the introduction of past volatility reduces the lag
structure of ARCH models (DANÍELSSON, 2011).

σ2 = w +
q∑
i=1

αiε
2
t−1 +

p∑
j=1

βjσ
2
t−j (11)

If p > 0, there is some order of conditional dependence in the model; αi is the coefficient
of the innovation term; and, βj is the parameter of the past volatility. A restriction of positiveness
in the parameters is done, whereas the sum of, αi + βj < 1, is less than one 6.

Another important stylized fact about returns is the leverage effect. Volatility does not
react at the same manner to positive and negative news. It tends to decline sharpen when
negative shocks affect markets. The GARCH model captures the conditional heteroscedasticity
6 Daníelsson (2011), highlights that using maximum likelihood as estimator can find out a global maximum

where the second condition of αi + βj < 1 cannot be attended. Thus, it can be flexible when the purpose is
forecasting
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behavior. However, the model does not consider the asymmetry in returns, what would drive
the model to some misspecification in some situations.

In the literature of conditional heteroscedastic models there are two formulations seeking
to model this fact. The first is proposed in Nelson (1991), the Exponential GARCH (EGARCH)
model:

(εt | Φt−1) = σtut, ut ∼ i.i.d(0, 1)

logσ2
t = ω +

q∑
i=1

αig(εt−i) +
p∑
j=1

βjlogσ2
t−j

where g(.) is the asymmetry parameter in the model, and εt−i is the innovation term.
Given its logarithmic form, the restrictions on the signal of the parameters is not necessary7.
Thus, θ captures the leverage effect and δ the magnitude of itself.

Positive news has the impact of

θεt + δ(εt˘Eεt)

.
Whereas, positive news has its effects given by Eεt) (FRANCQ; ZAKOIAN, 2011).
On the other hand, the Threshold GARCH model developed in Zakoian (1994) has its

generalized form such:

σat = ω +
p∑
j=1

βjσ
a
t−j +

q∑
i=1

αiε
a
t−i +

r∑
k=1

k(dεt−k≤0)εat−ia (12)

Where,dεt−k≤0ε
a
t−i

a is a dummy variable. It splits the estimation in two phases. When
the innovation term is positive the response of volatility would be (αi)ε2

t−i; and other when the
impact is negative, the response of volatility will be (αi+i)ε2

t−i.

2.3 Models Diagnostic
Though on the models described in this paper is possible to select the best fitted ones

based on information criteria such Akaike(AIC), Schwarz (SBC) and Hann-Quen(HQ), or using
a maximum local likelihood. Here is followed what Engle, Patton et al. (2001) points out: “A
volatility model should be able to forecast volatility”.

Hence, is followed the approach based on Cavaleri (2008) and Kuester, Mittnik e Paolella
(2006) to measure the suitability of the forecasting methods used to Brazilian and USA stocks
markets before the financial crisis. As stated by wheelwright1998forecasting, “To the consumer
of forecasts, it is the accuracy of the future forecast that is most important”8

One of the measures used is the Mean Square Error (MSE), that takes the difference
between the observed (yt) and forecasted (ŷt), intensifying the distance between both:

MSE =
n∑
t=1

(ŷt − yt)2

n
(13)

7 Nelson (1991) assumes g(.) as linear combination of its residuals: g(εt) = ω + θεt + δ(εt˘Eεt)
8 A further knowledge of statistical accuracy of forecasting methods is in Wheelwright, Makridakis e Hyndman

(1998).
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The next step to find the best variance forecasting method is the Mean Absolute Error
(MAE). That is the distance between the observed (yt) and the forecasting (ŷt) in module. It
has the advantage to be more interpretable, the outcome does not depend upon the scale of the
data. Mathematically:

MAE =
n∑
t=1

| ŷt − yt |
n

(14)

2.4 Backtesting Methods
The Basel Accords in Committee (1996) requires that regulated financial institutions

reserve capital to protect themselves from risk. The measure of risk used to enhance the exposure
to risk is a VaR on a threshold of 1p.p., where as much violations are realized over this limit, as
much capital this institutions have to set aside. However, these procedures might not be able to
identify the model that provides the correct suitability to data.

There is no straight approach to choose the best model for forecasting risk than backtest-
ing. It surpasses the approach of parameters test of significance or residuals analysis. Backtesting
consists of a procedure that compare value-at-risk (VaR) forecast generated by a particular
model, comparing them with post realized returns (DANÍELSSON, 2011). A complete discus-
sion about backtesting methods can be found in Campbell (2005). This paper will adopt the
procedures developed in Kupiec (1995) and Christoffersen (1998).

The former is concerned in the number of violations that a VaR faces given a α in a span
of time. Kupiec (1995) constructs a sequence of zeros and ones following a Bernoulli distribution
as a backtest. His proportion of failures techqniques represent on as a violation and zero as no
violation. The following formalization is given in Daníelsson (2011) as:

H0 : η ∼ B(p) (15)

Where B stands for the Bernoulli distribution. Probability (p) can be estimated by
p̂ = v1

WT
, being v the violations number and WT the windows size of backtesting. Of course, part

of the data sample (until WE) will be used to estimate the model, and part is estimated in a
rolling window, WE + 1. Thus the restricted likelihood fuction is:

LR(p) =
T∏

t=WE+1
(1˘p)1−ηt = (1˘p)v0(p)v1 (16)

Whether can be used LR = LU ,

LR = 2(logLU(p)˘logLU(p̂)) (17)

LR = 2log (1− p̂)v0(p̂)v1

(1− p)v0(p)v1
(18)

∼asymptotic χ2
1 (19)

Although the Bernoulli coverage test does not assume distribution for the returns, it
provides an intuitive benchmark to the VaR precision. (DANÍELSSON, 2011).As Campbell,
Huisman e Koedijk (2001) stated two shortcomings deepen this test: i) it presents low power
when sample size are small, systematically under reporting risk; ii) the test does not examine
the occurrence of clusters in tails, what lead to an underestimation of risk.
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3 Results
3.1 Data

The time series used in this paper are Brazilian and USA indexes, respectively Bovespa
and Dow Jones. They can be considered weighted portfolios, representing the overall performance
of these countries stock markets. Criteria of negotiability and relevance are used to select the
stocks participation in the index.

Using diary frequency, the sample covers the period that goes from 02/01/2002 to
31/12/2007 1 of log return, collected in Yahoo Finances database, using the software Grapher
OC.

Figure 1 – Bovespa and Dow Jones prices and log returns – Period: jan/2002 to dec/2008
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In a preliminary inspection in the database in 2 is possible to observe the presence
of clustering in the data, where maximum peaks are observed between 2002 and 2003. The
perturbance in this period is marked by the burst of stocks .com bubble. Additionally, Brazil
experienced the transition of presidency, when the Works Party candidate won the elections and
raised concerns about fiscal and monetary policy. These events were preceded by the currency
and Russian crisis, in 1999.
1 The number of observations is diferent in each series. Due the difference in holidays and closed days of Stocks

Exchange, Bovespa presented a length of 1488 price observations, while Dow Jones totalized 1510.
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The period that goes from the end of 2003 to the beginning of 2008 is a relatively calm
period in world financial markets. This can be evidenced by the USA stocks returns in ??.
Even though, the Bovespa presents high variability in its returns, in this period the stock index
behaves relatively less in the sample. In 2007, the series present a higher volatility, as reflect of
the subprime crisis in USA. However, the peaks of these periods were lower than the ones of
.com bubble.

In 1 is possible to identify the presence of a high excess kurtosis in both series, being
0.67 to Bovespa and 3.63 to Dow Jones indexes. Moreover, is possible to verify in ?? and ??,
the presence of autocorrelation in the squared series2. Additionally, the presence of skewness
is attest to Bovespa being negatively asymmetric distribution, while to Dow Jones it presents
positive asymmetry in distribution.

Table 1 – Descriptive Statistics of Bovespa and Dow Jones - 02/01/2002 to 31/12/2007

Statistics Bovespa Dow Jones
Mean 0,0009 0,0001
SD 0,0172 0,0098
Max 0,0615 0,0615
Min -0,0685 -0,0475
Kurtosis 0,6786 3,6310
Skewness -0,2889 0,2124
Jarque Bera 48,04(0,00) 833,95(0,00)
ADF -11,10(0,00) -11,54(0,00)
Length 1487 1509

The non-normality is present in both series. However, the Augmented Dickey Fuller
(ADF) test rejects the null hypothesis of unit root in the series. In a preliminary diagnosis, the
time series used in this paper presents desirable features to be modelled by a GARCH family
specification. The stylized facts of leptokurtosis, clustering and skewness are present in both
markets.

3.2 Conditional Variance Accuracy
In ??, is possible to observe the results of the conditional variance forecasting precision

to Bovespa. To filter the time series to the stylized facts presented in 3.1, are used a GARCH,
EGARCH, TGARCH and iGARCH modelling. All these tests are run in both, normal and
2 The squared autocorrelation of returns is a justification to use conditional variance modelling financial series
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t-student distributions to allow fatter tails. Stating a moving window of 1000 observations, the
estimation of the parameters is refitted every day, generating a variance forecasting of length
487 periods to Bovespa and 509 to Dow Jones.

Table 2 – Precision Measures of Time Varying Variances to Bovespa out-of-sample forecasting

GARCH
MSE MAE DAC MSE MAE DAC

GARCH(1,1) - Normal 0.2658 1.2286 0.5503 GARCH(1,1) - t-Student 0.2664 1.2282 0.5482
GARCH(1,2) - Normal 0.2658 1.2293 0.5462 GARCH(1,2) - t-Student 0.2662 1.2283 0.5482
GARCH(1,3) - Normal 0.2656 1.2284 0.5482 GARCH(1,3) - t-Student 0.2667 1.2335 0.5482
GARCH(2,1) - Normal 0.2659 1.2298 0.5523 GARCH(2,1) - t-Student 0.2661 1.2291 0.5462
GARCH(3,1) - Normal 0.2662 1.2312 0.5503 GARCH(3,1) - t-Student 0.2654 1.2277 0.5503
GARCH(2,2) - Normal 0.2658 1.2300 0.5523 GARCH(2,2) - t-Student 0.2659 1.2290 0.5462
GARCH(2,3) - Normal 0.2658 1.2298 0.5523 GARCH(2,3) - t-Student 0.2659 1.2296 0.5462
GARCH(3,2) - Normal 0.2657 1.2297 0.5523 GARCH(3,2) - t-Student 0.2657 1.2296 0.5462
GARCH(3,3) - Normal 0.2659 1.2310 0.5462 GARCH(3,3) - t-Student 0.2656 1.2295 0.5503

EGARCH
MSE MAE DAC MSE MAE DAC

EGARCH(1,1) - Normal 0.2669 1.2358 0.5236 EGARCH(1,1) - t-Student 0.2667 1.2335 0.5400
EGARCH(1,2) - Normal 0.2667 1.2350 0.5236 EGARCH(1,2) - t-Student 0.2658 1.2319 0.5441
EGARCH(1,3) - Normal 0.2663 1.2335 0.5379 EGARCH(1,3) - t-Student 0.2664 1.2326 0.5462
EGARCH(2,1) - Normal 0.2659 1.2324 0.5482 EGARCH(2,1) - t-Student 0.2658 1.2319 0.5441
EGARCH(3,1) - Normal 0.2661 1.2332 0.5400 EGARCH(3,1) - t-Student 0.2661 1.2325 0.5441
EGARCH(2,2) - Normal 0.2659 1.2324 0.5462 EGARCH(2,2) - t-Student 0.2658 1.2319 0.5441
EGARCH(2,3) - Normal 0.2659 1.2324 0.5462 EGARCH(2,3) - t-Student 0.2658 1.2319 0.5441
EGARCH(3,2) - Normal 0.2659 1.2326 0.5462 EGARCH(3,2) - t-Student 0.2658 1.2319 0.5441
EGARCH(3,3) - Normal 0.2659 1.2327 0.5462 EGARCH(3,3) - t-Student 0.2658 1.2319 0.5441

TGARCH
MSE MAE DAC MSE MAE DAC

TGARCH(1,1) - Normal 0.2663 1.2331 0.5359 TGARCH(1,1) - t-Student 0.2662 1.2306 0.5503
TGARCH(1,2) - Normal 0.2668 1.2344 0.5400 TGARCH(1,2) - t-Student 0.2666 1.2326 0.5462
TGARCH(1,3) - Normal 0.2658 1.2321 0.5441 TGARCH(1,3) - t-Student 0.2661 1.2311 0.5441
TGARCH(2,1) - Normal 0.2663 1.2332 0.5338 TGARCH(2,1) - t-Student 0.2662 1.2308 0.5462
TGARCH(3,1) - Normal 0.2664 1.2324 0.5441 TGARCH(3,1) - t-Student 0.2662 1.2321 0.5462
TGARCH(2,2) - Normal 0.2664 1.2339 0.5379 TGARCH(2,2) - t-Student 0.2662 1.2311 0.5462
TGARCH(2,3) - Normal 0.2661 1.2324 0.5462 TGARCH(2,3) - t-Student 0.2661 1.2319 0.5462
TGARCH(3,2) - Normal 0.2661 1.2308 0.5482 TGARCH(3,2) - t-Student 0.2658 1.2308 0.5503
TGARCH(3,3) - Normal 0.2659 1.2317 0.5462 TGARCH(3,3) - t-Student 0.2662 1.2312 0.5482

iGARCH
MSE MAE DAC MSE MAE DAC

iGARCH(1,1) - Normal 0.2657 1.2298 0.5462 iGARCH(1,1) - t-Student 0.2666 1.2293 0.5482
iGARCH(1,2) - Normal 0.2655 1.2288 0.5462 iGARCH(1,2) - t-Student 0.2663 1.2283 0.5503
iGARCH(1,3) - Normal 0.2655 1.2293 0.5462 iGARCH(1,3) - t-Student NC NC NC
iGARCH(2,1) - Normal 0.2658 1.2304 0.5523 iGARCH(2,1) - t-Student 0.2663 1.2291 0.5482
iGARCH(3,1) - Normal 0.2660 1.2291 0.5523 iGARCH(3,1) - t-Student 0.2660 1.2291 0.5523
iGARCH(2,2) - Normal 0.2655 1.2297 0.5523 iGARCH(2,2) - t-Student 0.2656 1.2279 0.5482
iGARCH(2,3) - Normal 0.2663 1.2290 0.5503 iGARCH(2,3) - t-Student 0.2665 1.2295 0.5482
iGARCH(3,2) - Normal 0.2656 1.2303 0.5503 iGARCH(3,2) - t-Student 0.2665 1.2295 0.5482
iGARCH(3,3) - Normal 0.2658 1.2309 0.5462 iGARCH(3,3) - t-Student 0.2663 1.2290 0.5503 height
Note:The input of observations used goes from 2002 to 2008. Using daily returns frequency, is
used a moving average window of 1000 days. The tests are run in out-of-sample observations
totalling 487 to Dow Jones.*N.C. refers to Non Convergence.

Following Engle, Patton et al. (2001) our concern is to find the best model to forecasting.
In other words, the least MSE and MAE measure. Whereas the concern of the DAC test is to
attest the efficiency of the model to predict the signal of the excess return.
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To find the best model, all the combinations of these model restricted to (p ≤ 3, q ≤ 3).
The purpose restricting the lags of the model is to maintain the parsimony at the same time
pursuing the best forecasting specification.

Is possible to note in 2 that the best (p, q) combinations in a normal distribution
based on MSE are (1, 1) and (3, 2) to GARCH; (2, 1) to EGARCH; (1, 3) to TGARCH; and,
(1, 2) to iGARCH. Considering a fatter tail, the best results are attained in GARCH (3, 3),
EGARCH(1, 2), TGARCH(3, 2), and iGARCH(3, 1). Being the best model based on this measure
to forecast financial risk to Brazil the iGARCH(1, 2) - Normal. Using the MAE measure the
best model is the GARCH(1, 1) – t-Student.

3 present the results to Dow Jones Index. When considering the MSE results, all the
models are almost tied. Most of them, when estimated in a t-Student distribution present Non
Convergence (N.C.) in some forecasting windows, thus the outputs are not presented.The MAE
test evidences GARCH(1, 1), iGARCH(1, 2) and iGARCH(2, 1) as more precise.

3.3 VaR Backtesting
The best and most parsimonious specification attested in this work, with acceptability

among practitioners is the GARCH(1, 1). This specification will use different distributions
assumptions, in order to averiguate the predictability of these models before the 2008 crisis. In
3.1, is observed that in the end of 2007, the volatility higher to both, Brazilian and USA stock
market. However, the question that arises here: could the conditional variance models be well
fitted in transition times?

To answer this question are used violation measures and independence measures such
stated in Kupiec (1995) and Christoffersen (1998) in different thresholds. Stating a moving
window of 1000 observations, the estimation of the parameters is refitted every day, generating
a forecasting of length 487 periods to Bovespa and 509 to Dow Jones. The realized values are
used to the model diagnostic.

In 4 is possible to observe that even though t-Student and normal distributions are
extensively used in practice, the risk based on these distributions are underestimated when
forecasted using an alpha of 5 or 1 p.p. When considered their skewed versions, the results
improve but still are above the limit of violations. However, the results suggest that skewed
versions of distributions presents suitability to the period covered in this paper. The best
distribution to a GARCH(1, 1) specification is the Jhonson’s-SU (JSU) distribution, that exactly
fits the number of expected violations to alpha of 1. Moreover, in a more rigorous test, only
JSU and GED distributions does not reject the null hypothesis of excess of violations and, joint
dependence and excess of violations.

The other models are in the region of rejection of the alternative hypothesis of excess of
violations mostly when considered an alpha of 1% or in the dependence test when alpha is 5%.
Hence, even though, the models are not underestimating risk to Brazil in a hit sequence, its
violations are clustering.

On the other hand, to Dow Jones Index, using the Skewed GED distribution the model
generated the most accurate forecasting. Although, none of the models respected the violation
zone. More distributions presented suitability when considering the more rigorous backtesting
tests: i) normal and skewness normal; ii) and GED and its skewness version. They presented
significance rejecting the alternative hypothesis of excess of violations and dependence in the
violations. Student distributions did not enable the convergence of the estimations, being
excluded of the experiment.

11



Table 3 – Precision Measures of Time Varying Variances to Dow Jones out-of-sample forecasting

GARCH
MSE MAE DAC MSE MAE DAC

GARCH(1,1) - Normal 0.0060 0.5544 0.5343 GARCH(1,1) - t-Student N.C N.C N.C
GARCH(1,2) - Normal 0.0060 0.5554 0.5206 GARCH(1,2) - t-Student N.C N.C N.C
GARCH(1,3) - Normal 0.0061 0.5548 0.5265 GARCH(1,3) - t-Student 0.0060 0.5558 0.5147
GARCH(2,1) - Normal 0.0060 0.5547 0.5383 GARCH(2,1) - t-Student N.C N.C N.C
GARCH(3,1) - Normal 0.0060 0.5547 0.5383 GARCH(3,1) - t-Student N.C N.C N.C
GARCH(2,2) - Normal 0.0061 0.5548 0.5265 GARCH(2,2) - t-Student N.C N.C N.C
GARCH(2,3) - Normal 0.0061 0.5551 0.5363 GARCH(2,3) - t-Student N.C N.C N.C
GARCH(3,2) - Normal 0.0061 0.5551 0.5363 GARCH(3,2) - t-Student N.C N.C N.C
GARCH(3,3) - Normal 0.0060 0.5551 0.5383 GARCH(3,3) - t-Student N.C N.C N.C

EGARCH
MSE MAE DAC MSE MAE DAC

EGARCH(1,1) - Normal 0.0060 0.5569 0.5049 EGARCH(1,1) - t-Student 0.0060 0.5563 0.5049
EGARCH(1,2) - Normal 0.0060 0.5570 0.5049 EGARCH(1,2) - t-Student 0.0060 0.5564 0.5068
EGARCH(1,3) - Normal 0.0060 0.5570 0.5049 EGARCH(1,3) - t-Student 0.0060 0.5558 0.5147
EGARCH(2,1) - Normal 0.0060 0.5551 0.5206 EGARCH(2,1) - t-Student 0.0060 0.5550 0.5127
EGARCH(3,1) - Normal 0.0060 0.5574 0.5127 EGARCH(3,1) - t-Student 0.0060 0.5554 0.5166
EGARCH(2,2) - Normal 0.0060 0.5552 0.5166 EGARCH(2,2) - t-Student N.C. N.C. N.C.
EGARCH(2,3) - Normal 0.0060 0.5557 0.5147 EGARCH(2,3) - t-Student N.C. N.C. N.C.
EGARCH(3,2) - Normal 0.0060 0.5572 0.5147 EGARCH(3,2) - t-Student N.C. N.C. N.C.
EGARCH(3,3) - Normal 0.0060 0.5578 0.5029 EGARCH(3,3) - t-Student 0.0060 0.5557 0.5225

TGARCH
MSE MAE DAC MSE MAE DAC

TGARCH(1,1) - Normal 0.0060 0.5558 0.5068 TGARCH(1,1) - t-Student N.C. N.C. N.C.
TGARCH(1,2) - Normal 0.0060 0.5562 0.5049 TGARCH(1,2) - t-Student N.C. N.C. N.C.
TGARCH(1,3) - Normal 0.0060 0.5551 0.5304 TGARCH(1,3) - t-Student N.C. N.C. N.C.
TGARCH(2,1) - Normal TGARCH(2,1) - t-Student N.C. N.C. N.C.
TGARCH(3,1) - Normal 0.0060 0.5560 0.5147 TGARCH(3,1) - t-Student N.C. N.C. N.C.
TGARCH(2,2) - Normal 0.0060 0.5539 0.5304 TGARCH(2,2) - t-Student 0.0060 0.5556 0.5127
TGARCH(2,3) - Normal 0.0060 0.5556 0.5166 TGARCH(2,3) - t-Student 0.0060 0.5553 0.5088
TGARCH(3,2) - Normal 0.0060 0.5552 0.5245 TGARCH(3,2) - t-Student N.C. N.C. N.C.
TGARCH(3,3) - Normal 0.0060 0.5555 0.5029 TGARCH(3,3) - t-Student 0.0060 0.5555 0.5029

iGARCH
MSE MAE DAC MSE MAE DAC

iGARCH(1,1) - Normal 0.0060 0.5544 0.5363 iGARCH(1,1) - t-Student N.C N.C N.C
iGARCH(1,2) - Normal 0.0060 0.5544 0.5383 iGARCH(1,2) - t-Student N.C N.C N.C
iGARCH(1,3) - Normal 0.0060 0.5550 0.5206 iGARCH(1,3) - t-Student N.C N.C N.C
iGARCH(2,1) - Normal 0.0060 0.5543 0.5422 iGARCH(2,1) - t-Student N.C N.C N.C
iGARCH(3,1) - Normal 0.0060 0.5547 0.5422 iGARCH(3,1) - t-Student N.C N.C N.C
iGARCH(2,2) - Normal 0.0060 0.5546 0.5343 iGARCH(2,2) - t-Student N.C N.C N.C
iGARCH(2,3) - Normal N.C. N.C. N.C. iGARCH(2,3) - t-Student N.C N.C N.C
iGARCH(3,2) - Normal 0.0060 0.5547 0.5324 iGARCH(3,2) - t-Student N.C N.C N.C
iGARCH(3,3) - Normal 0.0060 0.5552 0.5402 iGARCH(3,3) - t-Student N.C N.C N.C height
Note:The input of observations used goes from 2002 to 2008. Using daily returns frequency,
is used a moving average window of 1000 days. The parameters are re estimated after every
one-step-ahead forecasting. The tests are run in out-of-sample observations totalling 509 to Dow
Jones.*N.C. refers to Non Convergence.
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4 Conclusion
The objective of this paper was to contribute to the literature of risk forecasting presenting

how conditional models based in different specifications and distributions behave in times of
transition to Developed (USA) and Emerging Markets (Brazil). The methodology used follows
Kuester, Mittnik e Paolella (2006) in the backtests used and Cavaleri (2008) in the estimation
procedure.

The results suggest most of the models behave badly in a time of transition- the span
between .com bubble and subprime crisis. The best models to predict one-step-ahead conditional
variance were parsimonious iGARCH and standard GARCH models to both countries. The
backtesting of one-step-ahead VaR models, pointed just GARCH(1, 1) – GED, GARCH(1, 1)
–Skeweness GED and GARCH(1, 1) – JSU as the best models to Brazil. While to Dow Jones
index, the allowance of fat tails using t-Student distributions presented problems of convergence
in some windows of the forecasting. The best models to the index were GARCH(1, 1) – Normal,
GARCH(1, 1) – Skewness Normal, GARCH(1, 1) – GED, GARCH(1, 1) –Skeweness GED.

A few lessons can be extracted from this experiment: i) restricted types of distributions
(i.g. Normal) assumptions does not fits well modelling risk to all countries. Being more flexible
ones (i.g. GED) desirable; and, ii) the financial manager whose considered the period between
2002 to 2008 to feed up its VaR models, consistently underestimated risk in this period considering
more standard approaches.

Further applications should expand the methods of risk estimations. Focusing in tail
modelling, such Extreme Value Theory(EVT) and algorithmic approaches. Moreover, different
time span must be considered.
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Appendix

Figure 2 – Bovespa and Dow Jones Correlograms – Period: jan/2002 to dec/2008
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Table 4 – Backtesting of GARCH(1,1) - VaR models to Bovespa and Dow Jones

Bovespa
Model Lenght For. alpha % Violations LRuc LRcc

Normal 487 0.05 7.2 4.344(0.03) 4.477(0.10)
0.01 2.1 4.184(0.04) NA

Skewed - Normal 487 0.05 7.2 4.344(0.03) 4.477(0.10)
0.01 1.4 0.829(0.36) NA

t-Student 487 0.05 7.4 5.147(0.0.02) 5.357(0.06)
0.01 1.6 1.702(0.192) NA

Skewed t-Student 487 0.05 7.2 4.344(0.03) 4.477(0.10)
0.01 2.0 4.184(0.04) NA

GED 487 0.05 7.2 4.344(0.03) 4.477(0.10)
0.01 1.6 1.702(0.192) NA

Skewed GED 487 0.05 7.0 3.603(0.05) 4.75(0.09)
0.01 1.2 0.247(0.61) NA

JSU 487 0.05 7.0 3.603(0.05) 4.75(0.09)
0.01 1.0 0.003(0.953) NA

Dow Jones
Model Lenght For. alpha % Violations LRuc LRcc

Normal 509 0.05 6.9 3.394(0.06) 3.55(0.17)
0.01 2.9 12.799(0.00) NA

Skewed - Normal 509 0.05 6.3 1.646(0.19) 1.647(0.439)
0.01 2.8 10.66(0.00) NA

t-Student 509 0.05 N.C. N.C. N.C.
0.01 N.C. N.C. N.C.

Skewed t-Student 509 0.05 N.C. N.C. N.C.
0.01 N.C. N.C. N.C.

GED 509 0.05 6.7 2.748(0.09) 2.991(0.22)
0.01 2.2 5.203(0.02) N.A.

Skewed GED 509 0.05 6.3 1.646(0.19) 2.131(0.34)
0.01 2.0 3.734(0.05) NA

JSU 509 0.05 6.5 2.165(0.14) 2.518(0.28)
0.01 2.6 8.684(0.00) N.A.

Note:The time covered by this backtesting goes from 2002 to 2008. Using daily returns frequency,
is used a moving average window of 1000 days. The parameters are re estimated after every
one-step-ahead forecasting. The tests are run in out-of-sample observations totalling 487 to
Bovespa and 509 to Dow Jones.
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