
Dilution priors for interaction terms in
BMA: An application to the financial crisis

of 2008–09

Mathias Moser†

In this paper we investiagte the usage of interaction terms in Bayesian Model

Averaging. Standard model priors treat interactions like any other covariate

and include them in models even if their parent variables have not been selected

by the sampler. The literature proposes the usage of ‘Dilution Priors’ to address

this problem. We apply two different heredity priors to a dataset of cumulated

output loss in the financial crisis of 2008/09 and compare the effects of these

priors on the inclusion of interaction terms. Furthermore predictive inference is

carried out to evalute the alternative priors.
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1 Introduction

If we consider regression models with a large number of potential covariates a critical

question is how to determine good models (measured e.g. by their predictive performance).

Since the number of possible models increases exponentially with the number of predictors

K, automatic techniques for variable selection have become reasonably common, especially

in growth econometrics. Moreover the treatment of model uncertainty has been adressed

in numerous studies, specifically through Bayesian Model Averaging (BMA, cf. Fernández,

Ley, and Steel 2001b).

For large model spaces (that is > 214 covariates) these methods use sampling algorithms to

determine well performing models, such as Markov Chain Monte Carlo routines. Similarily

different priors over the model space have received much attention mostly focusing on

‘objective priors’. One approach is an equal weighting of all possible models, which is

referred to as a ‘(discrete) uniform model prior’. This prior choice assigns each model a

prior inclusion probability of 2−K and accordingly prefers mid–sized models.
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Even if such a weighting is commonly referred to as an ignorance prior (due to its

uniform prior inclusion probabilities), such priors have been critised for leaving out valuable

information which may be crucial for the model search algorithm (cf. George 2010).

One case in which a uniform model prior might be inadequate is a model space that includes

highly correlated variables. In this scenario the model space consists of partly redundant

models which may include different variables that perform equally good or bad. An example:

Consider some explanatory variable x1 which is uncorrelated with a highly correlated set of

variables X2...K . Adding another correlated variable to the set X2...(K+1) under a uniform

prior would c.p. reduce the prior weight on x1 even though we added no new information.

This effect becomes more severe if x1 is in fact a key variable to explain some data y. In

large model spaces this might be augmented by an MCMC algorithm that frequently visits

resaonably good but redundant models and at the same time reduces the importance of

well–performing unique models.

In growth empirics models have to deal with parameter heterogeneity, for example in a

regional context. A well–known example are sub–saharan countries for which a regional

dummy and/or interaction terms are considered in the model. In such a setting it is good

practice in econometrics to include all parent variables in a model if an interaction term is

included (cf. Chipman 1996). If we however use MCMC techniques with a uniform model

prior the prior model probability of a well–specified model is as high as that of a model

containing only an interaction without its parent variables (cf. Masanjala and Papageorgiou

2008).

In such a case two problems can arise: First, from a practical perspective, it can be hard

to interpret interaction terms without parent variables (cf. Crespo Cuaresma 2011 and

Papageorgiou 2011). Second, chances are high that the interaction term and some or all

of its parents are highly correlated (depending on the structure of the variables). If we

ignore the parent variables of an interaction term, it might catch some of the effect of the

parent variable which leads in the best case to augemented standard errors and followingly

insignificant coefficients for the interaction term.

Generally two solutions may be applied to this problem. What has been discussed is to

specify priors that adjust or penalize models with missing parent variables and therefore

include additional prior information. Another approach is to adjust the prior for the

correlation between variables (cf. Garthwaite and Mubwandarikwa 2010).

In the following we will scrutinize different prior assumptions to correctly higher level

interaction terms in Bayesian Model Averaging: Section 2 elaborates on the method and
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different possible prior assumptions. In chapter 3 we introduce alternative prior concepts.

As an application Section 4 applies the discussed priors on a dataset on output loss during

the 2008–09 financial crisis and evaluates the results. Section 4 gives a short summary of

the findings.

2 Bayesian Model Averaging

A model Mj with a set of regressors Zj ∈ Z may be written as

y = αιn + Zjβj + ε (1)

where alpha is the intercept and ιn is an n–dimensional vector of ones. To carry out Bayesian

inference we need to multiply the likelihood with a suitable prior on the parameters θ to

derive the posterior distribution.

p(θ|y,Mj) = p(θ|Mj)p(y|θ,Mj) (2)

Following numerous studies (cf. Ley and Steel 2009) we will use non–informative priors for

α and σ

p(α, σ) = σ−1

an a g–prior for all β (Zellner 1986), where g is 1/max(n,K2) the so–called BRIC prior

(Fernández, Ley, and Steel 2001a).

p(βj|α, σ,Mj) = f
kj
N (βj|0, σ2(gZ ′jZj)

−1) (3)

To address model uncertainty we can take the average over all models, that is the posterior

of each model times its posterior model probability:

p(θ|y) =
2K∑
j=1

p(θ|y,Mj)p(Mj|y) (4)

the latter is given as the marginal likelihood multiplied with the prior model probability

p(Mj|y) = p(y|Mj)p(Mj)

The prior model probability p(Mj) can be chosen in various ways. One way is a uniform
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prior that assigns the same ex ante probability to each model. Another solution by Ley

and Steel 2009 introduces a hierarchical Binomial–Beta prior which will be used in the

remainder of this paper.

Prediction can be based upon the predictive density (cf. Zellner 1971)

p(ỹ|y, Z, Z̃) ∼ t(Z̃β,
νs2

ν − 2
[I + Z̃(Z ′Z)−1Z̃ ′]︸ ︷︷ ︸

H−1

, ν) (5)

The marginal posterior density function is then

p(ỹi) =
ỹi − Z̃(i)β̂√

hii
∼ tν (6)

which can be used to calculate the Log Predictive Score

LPSBMA = −
n∑
i=1

log
2K∑
j=1

p(ỹi) (7)

3 Dilution: Weak and Strong Heredity Priors

Heredity priors apply to models with interaction terms and disfavour models with interac-

tions but missing parents. More specifically they can adjust the prior model probability with

regard to the chosen covariates. In a three variable model (A, B and their interaction AB)

the following cases can be distinguished if an interaction term AB is included (δAB = 1):

Pr(δAB = 1|δA, δB) =



p00 if(δA, δB) = (0, 0)

p01 if(δA, δB) = (0, 1)

p10 if(δA, δB) = (1, 0)

p11 if(δA, δB) = (1, 1)

A prior which does not follow the heredity principle would simply let p00 = p01 = p10 = p11

and therefore treat all models as ex ante equally important. A more restrictive prior may

set (p00, p01, p10, p11) = (0, 0, 0, q), which would ignore all models with interaction terms and

missing parent variables. This has been referred to as a strong-heredity prior (Chipman

1996; Crespo Cuaresma 2011). If we relax these assumption by setting (p00, p01, p10, p11) =

(q1, q2, q3, q4) this leads to a prior according to the weak heredity principle.
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For this approach it could be useful to relate the prior model probability to the number

of missing parent variables, i.e. a model with an interaction term which lacks both parent

variables is more unlikely than a model which includes at least one parent. Therefore we

will propose a structure like p00 < (p01 = p10) < p11.

The process of choosing the probabilites p can be simplified by expressing them as a function

of the number of missing parent variables. Through this approach one could imply e.g. a

linear, logarithmic or exponential penalty for additional missing parent variables. Let the

number of missing parents be denominated by η then we could express the penalty for the

simple case of a uniform prior as

p(Mj) =

2−K if(η = 0)

2−K × 1
η+1

if(η > 0)

(8)

By premultiplying the numerator or denominator of the penalty term 1
η

by a scalar s (which

we may refer to as a shape parameter), the form of this logarithmic function can be easily

adjusted. Equation 3 is an extension to the standard uniform prior, as it downweighs models

with missing parents but keeps the prior model probability of other models unaltered. In

the following analysis we will use a standard logarithmic penalty, that is a shape parameter

s equal to one.

4 Estimating output loss for the recent financial crisis

Crespo Cuaresma and Feldkircher 2012 examined output loss during the 2008 financial

crisis for 153 countries around the world. The dataset includes a large number of variables

and higher level interaction terms.1 The inclusion of such ‘triple-interactions’ (e.g. cesee×
real gdp growth× net fdi) leaves room for a large number of models with missing parent

variables if we apply BMA techniques. In most cases were the sampler selects such a

three–component interaction term not all three parent variables will be included in the

model. We repeat the BMA procedure of Crespo Cuaresma and Feldkircher 2012 and

1A register of the included variables can be found in the Appendix of their paper.
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introduce two forms of heredity priors to adjust for these effects. The first model weighs

models through a standard binomial–beta prior. The second approach utilizes the concept

of strong heredity and sets the prior model probability of a model with interactions but

(partly) missing parents to zero. In a third setting we implement a weak heredity prior

with a penalty according to chapter 3 on the Binomial–Beta prior.

Table 1: Results for Cumulated Output Loss between 2007 and 2009
(Top 15 variables from each model)

No Heredity Strong Heredity Weak Heredity

PIP PMean PSD PIP PMean PSD PIP PMean PSD

rgdpcap 0.84 -1.7767 1.0096 0.86 -1.9007 1.0107 0.83 -1.7517 1.0164
UA 0.77 -12.3058 8.3511 0.88 -15.2819 7.4963 0.80 -13.0868 8.2636

EU.15 0.74 -4.3212 3.1919 0.71 -4.2836 3.2754 0.75 -4.4602 3.2132
real.gdp.gr 0.67 0.4242 0.3471 0.80 0.5168 0.3254 0.73 0.4677 0.3393

transition#FinOpenn 0.65 -7.4634 6.5124 0.37 -5.0304 7.0072 0.64 -7.4073 6.5122
transition#real.gdp.gr

#ext.debt.gdp 0.64 -0.0160 0.0141 0.09 -0.0020 0.0067 0.53 -0.0132 0.0141
imp.from.US.gdp 0.51 -0.1557 0.7396 0.49 -0.1630 0.8209 0.55 -0.1706 0.7562
tradeExp.US.gdp 0.50 -0.0732 0.7286 0.44 -0.0611 0.8099 0.47 -0.0649 0.7456

baltics 0.47 -5.7729 7.0831 0.92 -14.1800 5.7719 0.55 -7.1530 7.4096
transition#net.fdi.infl 0.44 0.2962 0.4287 0.07 0.0207 0.1740 0.39 0.2560 0.4022

dGapExo 0.35 -0.0225 0.0352 0.25 -0.0150 0.0302 0.32 -0.0201 0.0338
reerm 0.35 -0.0050 0.0080 0.45 -0.0073 0.0094 0.35 -0.0051 0.0081

transition#real.gdp.gr
#net.fdi.infl 0.35 0.0180 0.0353 0.08 0.0054 0.0224 0.29 0.0160 0.0333

pop 0.33 0.2269 0.3827 0.26 0.1658 0.3357 0.30 0.2066 0.3688
dom.credit 0.33 -0.0104 0.0177 0.27 -0.0085 0.0166 0.33 -0.0109 0.0184
transition 0.11 0.4726 2.6997 0.92 -0.5852 5.9498 0.19 0.7761 3.4477
FinOpenn 0.11 0.1660 0.6705 0.40 0.6575 1.2280 0.12 0.1803 0.6990
net.fdi.infl 0.11 0.0145 0.0594 0.31 0.0426 0.0969 0.13 0.0167 0.0635

cpi corruption 0.30 -0.2173 0.3925 0.26 -0.1970 0.3882 0.30 -0.2174 0.3924

Log Pred Score 2.8490 2.9893 2.8614

By eliciting a strong heredity prior it can be seen from table 4 that the posterior inclusion

probabilities of interaction terms drop sharply compared to a scenario with a standard

model prior. Furthermore the inclusion probabilities of the single parent variables are

pushed upwards, since they now could capture some of the effects of the missing interaction

terms. The transition variable and its interactions with other variables show for example

that the PIP of the interaction terms drop compared to the no heredity scenario (see e.g.

transition#FinOpenn). However the inclusion probability of the single parent variables

Transition and FinOpenn rises sharply since they have to be included in any model featuring

their interaction.
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Figure 1: Posterior Inclusion Probabilites for the top 15 variables from each model

In contrast the weak heredity prior penalizes models with missing parent variables but

still includes them if they perform excessively well. Accordingly inclusion probabilites for

interaction terms are between those of the no heredity and strong heredity scenarios. While

the weak heredity prior does not overvalue parent variables, like in the strong heredity

setting, it emphasizes the importance of some not interacted variables like the EU15 dummy

or import from US relative to GDP (‘imp.from.US.gdp’).

Prediction was carried out by randomly dropping 15% of the sample and calcultating the

LPS of the predicted values compared to the actual realizations of cumulated output loss.

Especially the strong heredity prior performs distinctively worse than the default setup with

a LPS score of 2.99 (compared to 2.85). As can be seen from the PIP the weak heredity

prior also favours models with interaction terms with not all of their parents included.

Accordingly its LPS is close to the no heredity prior.

5 Discussion

The treatment of interaction terms in Bayesian Model Averaging has only been adressed

theoretically in the literature. A number of authors propose that such interactions should

be dealt with in a special way rather than treating them as normal covariates. Since a

standard sampler selects models with no regard to their specification, it has been suggested

to impose a suitable model prior to address the problem of missing parent variables in
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regressions with interaction terms.

In this paper we implement different variations of a so–called heredity prior and evaluate

their performance compared to a standard BMA procedure with a default model prior.

The strong heredity scenario puts a severe penalty on uncommon models, that include

interaction terms but not their parents, and effectively dismisses them as improper. Another

alternative to introduce prior information on model specification is a prior according to the

weak heredity principle. We propose a prior specification that puts a linear penalty on

models with missing interaction terms and downweighs their model probability dependent

on the number of missing parent variables.

This study uses a dataset on cumulated output loss during the financial crisis of 2008/09

to assess the effects of these different priors. Compared to an ignorance prior the strong

heredity prior forces a correct model specification. Followingly the model space is effectively

reduced to models with a) no interaction terms or b) interaction terms and all their

parent variables included. Results show that for this dataset, the inclusion probabilites

for interaction terms drop sharply if we apply a strong heredity prior. At the same time

the parent variables become more important, since they are now necessarily included if

the interaction term is in the model. Predictive inference shows that the strong heredity

principle performs worse than a prior without dilution property.

As an alternative we introduced a weak heredity prior, which in our dataset, stresses the

importance of the interaction terms. Accordingly it allows more often for an uncommon

model, that is a model with interaction terms and not all of their parents included.

Predictive inference shows that the weak heredity prior in this example performs equally

well as a no heredity prior.

The weak heredity prior seems to a be a reasonable choice for models that feature interaction

terms. On the one hand it includes prior information on how to handle these kind of

variables. On the other it allows the model search algorithm to deviate from this prior

recommendation if uncommon models perform extremely well over others.
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