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Abstract

This article builds on the mean-variance criterion and the links with the
expected utility maximization to define the optimal allocation of portfolios,
and extends the results in two ways, first considers tailored made utility
functions, which can be non continuous and able to capture possible prefer-
ences associated with some portfolio managers. Second, it presents results
that relate to static (myopic) portfolio allocation decisions connected to dy-
namic settings where multi-period allocations are considered and conditions
are defined to rebalance the portfolio as new information arrive. The con-
ditions are established for the compatibility of static and dynamic decisions
associated with different utility functions.
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1 Introduction

In portfolio allocation problems, the main feature is the allocation of resources to
different alternatives available, in this case, different financial assets. The main
objective is to choose a specific combination that is optimal by a given criterion.
This problem has been studied since the research in Markowitz (1952). This au-
thor has founded what is now known as the normative portfolio theory. Due to
difficulties in the implementation of the theory as a way of justifying real deci-
sions and to a changing emphasis in the study of financial markets, there has been
a continuous research on these matters. The normative approach supposes that
decision agents can specify fully their utility function and know with certainty the
distribution of returns.

In the normative portfolio theory and other fields, it is common to define util-
ity functions that are analytically tractable. One of the best known is the quadratic
utility function. In the portfolio theory, this utility function has an additional
advantage. Decisions can be formulated in terms of the vector of means and co-
variance matrix associated with the returns, whatever the distribution considered.
This utility function has several undesirable characteristics that led to wide rang-
ing criticisms.

One simplification associated with the quadratic utility function is related to
the equivalence between expected utility maximization and mean-variance crite-
rion. This is not specific to this utility function. Assuming the gaussian form to the
returns distribution, it can easily be demonstrated that with a negative exponential
utility function there is also an equivalence between both criteria.

With other utility functions commonly used like the power and logarithmic
utility functions, there is not a direct equivalence between expected utility max-
imization and mean-variance criteria. To overcome this problem, extensive re-
search has been made to justify the mean-variance criteria as an approximation
in this context (Levy and Markowitz, 1979; Pulley, 1981, 1983; Kallberg and
Ziemba, 1983; Kroll et al, 1984; Reid and Tew, 1986). The main result is that,
even when it is not the exact solution, the mean-variance criterion can give de-
cisions that are similar to the ones obtained through these utility functions. It
is in this way that most research produced recently uses the mean-variance cri-
terion instead of the expected utility maximization paradigm. The most recent
research justifying the mean-variance criterion is found in Levy and Levy (2014)
and Markowitz (2014).
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With a known gaussian distribution, a myopic approach can be used without
much thought about the length of the period considered, differences between one
and multiperiod settings and the role of portfolio reallocations. To give an exam-
ple, let us designate the vector of returns by y and assume that this random vector
follows a gaussian distribution with mean µ and covariance matrix Σ. The length
of the period considered can easily be changed by multiplying the parameters by
an appropriate factor h. More recently, several characteristics in financial markets
have been highlighted that led to rethinking the straightforward rules currently
proposed to define optimal portfolios.

Nowadays the distinction between short and long term decisions assumes a
crucial role. Procedures defined for decision processes must be different. In a
mean-variance criteria framework there is a trade-off between returns and risk,
which means that the weights given to each component depend not only on the
specific decision agent considered, but also on the horizon considered.

Reallocations have started to assume an important role. Reallocations are
needed because there is a time-varying distribution of returns, and also, because
the information available for the decision agents can change. Recent research have
been produced on dynamic portfolio allocation problems, where considering sev-
eral scenarios associated with the time-varying distributions for the returns, and
the preferences of the investors expressed by an utility function, different rules for
multi-period investments have been put forward (Birge, 2007; Skiadas, 2007; Yu
et al, 2010; Bae et al, 2014; Bodnar et al, 2015b,a).

The rest of the paper is organized as follows. Section 2 presents the standard
results associated with a normative approach to portfolio selection, highlighting
the practical difficulties associated with its implementation and referring to some
ways to overcome those difficulties, for example, with the use of robust estima-
tors and robust optimization. Section 3 presentes a series of results that relate
the mean-variance criterion with the use of non continuous utility functions. In
Section 4 as the normative approach and the mean-variance criterion were devel-
oped for static settings, an extension to a dynamic setting is considered. Section 5
presents some concluding remarks.
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2 The normative approach

Portfolio choice is an example of a decision taken in an environment of uncer-
tainty. The theoretical framework specifies that rational decisions are the ones
yielding from the expected utility maximization paradigm. For a more exten-
sive treatment of portfolio choice problems; see Ingersoll (1987) and Huang and
Litzenberger (1988).

The portfolio decision consists in choosing the proportions of an initial wealth
to be invested in a set of available assets. With a myopic decision, supposing that
the initial wealth is w0, the decision vector is designed by x = (x1, . . . ,xk)

>, where
xi, i = 1, . . . ,k, is the proportion of w0 to be invested in the asset i, y represents
the vector of random returns and the final wealth is given by w = w0x>(1+ y).
The aim is to choose a set of weights which to maximize the expected utility,
E (U(w)), subject to a set of constraints.

Since Markowitz (1952) the expected utility maximization in a portfolio choice
context has been replaced by the mean-variance criterion. Instead of considering
different utilities for different values of the final wealth, the portfolio is chosen
by weighting two conflicting characteristics to any investor, expected returns and
risk. The risk is measured by the variance of returns.

The aim is to maximize expected returns for a given variance of returns, or
put in another way, minimize variance of returns for a given expected return. This
latest version gives rise to a quadratic programming problem. If instead of final
wealth, only the vector of returns y with mean µ and covariance matrix Σ is used,
the mean and variance of returns of a portfolio represented by x is given respec-
tively by µp = x>µ and σ2

p = x>Σx. The quadratic programming problem can be
formulated as

minimize
x

1
2

x>Σx subject to
{

x>µ = µ
∗
p;x>1 = 1;x≥ 0

}
(1)

where µ∗p is the target expected return and 1 =(1, . . . ,1)>. By varying the tar-
get return, the efficient frontier can be obtained, which represents a set of points(
σ2

p ,µ
∗
p
)

associated with different optimal portfolios for different values of µ∗p.
If x≥ 0 is not an active constraint, the optimal portfolio is given by

x∗ = Σ
−1 (λ1µ +λ21) (2)
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where

λ1 =
1>Σ−1µ

D
− 1>Σ−11

D
µ
∗
p (3)

λ2 =
1>Σ−1µ

D
µ
∗
p−

µ>Σ−1µ

D
(4)

and
D = 1>Σ

−1
µ1>Σ

−1
µ−1>Σ

−11µ
>

Σ
−1

µ (5)

A second version of the mean-variance criterion does not use a target expected
return but instead a parameter of risk aversion. The objective function includes
both components that characterize this criterion, the mean and variance of returns.
The quadratic programming problem can be formulated as

minimize
x

λ

2
x>Σx− x>µ subject to

{
x>1 = 1;x≥ 0

}
(6)

where λ > 0 is a parameter of risk aversion. When compared with the version
presented in (1), where the efficient frontier is defined by varying µ∗p, the same
efficient frontier can be obtained by varying λ .

Sometimes, due to values assumed by the parameters, the non-negativity con-
straint is not active. As happens with the version presented in (1), an analytical
expression for the optimal portfolio is available, which is

x∗ =
1
λ

Σ
−1
(

µ− λ −1>Σ−1µ

1>Σ−11
1
)

(7)

When the constraint x≥ 0 is active, meaning that is not possible to define port-
folios using short-selling, in both cases, (1) and (6), to define optimal portfolios,
numerical methods associated with quadratic programming must be used. The
mean-variance criterion has close links with the expected utility maximization cri-
terion. Two cases are presented where the exact equivalence can be established.
These two cases correspond to the use of a quadratic or a negative exponential
utility function.

Proposition 1 If an investor expresses his preferences through a quadratic utility
function, an equivalent criterion to the expected utility maximization criterion is
the mean-variance criterion, independently of the distribution of returns consid-
ered.
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Proof. Suppose that an investor uses the utility function given by U(w) =
w− bw2, b > 0. If this function is written as a second order Taylor expansion
around the mean of w, µw, then

U(w) =U (µw)+U ′ (µw)(w−µw)+
1
2

U ′′ (µw)(w−µw)
2 (8)

Taking the expectation on both sides means that

E (U (w)) =U (µw)+
1
2

U ′′ (µw)σ
2
w (9)

As U ′′ (w) = −2b < 0 for all w, then for a given target mean µw, the expected
utility is maximized by choosing a portfolio which minimizes σ2

w.

Proposition 2 When an investor expresses his preferences by a negative expo-
nential utility function, if the vector of returns y follows a multivariate gaussian
distribution with mean µ and covariance matrix Σ, then there is an exact equiva-
lence between expected utility maximization and mean-variance criterion.

Proof. Suppose that the investor expresses his preferences through the utility
function U (w) = −exp(−λw), λ > 0. In this case, we have a version of the
mean-variance criterion as it is expressed in (6). If returns follow a multivariate
gaussian distribution, a given portfolio induces a gaussian distribution to the final
wealth with mean µw and variance σ2

w. The expected utility is given by

E (U (w)) =
∫

∞

−∞

−exp(−λw)
1√

2πσw
exp

(
−(w−µw)

2

2σ2
w

)
dw

= −exp
(

λ 2

2
σ

2
w−λ µw

)
(10)

When E (U (w)) is maximized, this is equivalent to minimize λ

2 σ2
w− µw. The ex-

pected utility maximization criterion is equivalent to the mean-variance criterion.

In the normative portfolio theory, it is assumed that investors can specify fully
their utility functions and that parameters characterizing the distribution of returns
are also known. In the application of the normative portfolio theory it is usually
assumed that parameters can be conveniently estimated by an independent and
identically distributed series of returns and the mean-variance is used instead of

6



the expected utility maximization criterion. If the mean-variance criterion has not
suffered a significant amount of criticism, the ability to deliver meaningful values
to parameters used in this context has consistently been put in doubt (Kalymon,
1971; Winkler and Barry, 1975; Bawa et al, 1979; Frost and Savarino, 1986; Jo-
rion, 1986; Frankfurter and Lamoureux, 1987; Jorion, 1991; Chopra and Ziemba,
1993; Polson and Tew, 2000; Aı̈t-Sahalia and Brandt, 2001; Kritzman, 2006; Lee
and Stefek, 2008).

There are two main factors that hamper the ability of defining parameters
through simple sample estimates. The first is the role played by estimation error.
The second is just the simple fact that the assumption of independent and identi-
cally distributed returns is an inappropriate one. Two ways have been considered
to soften this problem, one is to consider the use of robust statistics to estimate in
a more consistent way the inputs of the model through a Bayesian treatment of the
parameter uncertainty (Bawa et al, 1979; Frost and Savarino, 1986; Jorion, 1986;
Frankfurter and Lamoureux, 1987; Jorion, 1991; Polson and Tew, 2000; Kan and
Zhou, 2007; DeMiguel and Nogales, 2009), the other is addressing the problem
assuming a pessimist approach related to the optimization problem subjacent to
the decision process, and adopting robust optimization approaches (Goldfarb and
Iyengar, 2003; Tütüncü and Koenig, 2004; Fabozzi et al, 2007a,b; Schöttle, 2007;
Ben-Tal et al, 2010; Schöttle et al, 2010; Gregory et al, 2011; Chen and Kwon,
2012; Ye et al, 2012; Scutellà and Recchia, 2013; Kolm et al, 2014; Fliege and
Werner, 2014).

3 Tailored utility functions

The utility functions mentioned above are commonly used in financial literature.
They fulfil basic requirements when associated with investors that prefer more
to less and are risk averse. Mathematically this can be expressed using first and
second derivatives of the utility function, U ′ (w) > 0 and U ′′ (w) < 0. The first
derivative being always positive ensures that more is preferred to less. The second
derivative being always negative implies that investors are risk averse.

An important role played by utility functions referred above is their ability
to characterize the risk aversion associated with each investor. Two important
measures of risk have been used in this context, Absolute Risk Aversion (ARA)
and Relative Risk Aversion (RRA) indices. They are defined for each contin-
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uous utility function considered as ARA(w) = −U ′′ (w)/U ′ (w) and RRA(w) =
−wU ′′ (w)/U ′ (w). These indices have been used to highlight some difficulties
associated with the use of those utility functions. It is commonly accepted that is
reasonable to expect that general investors can be characterized by a constant ab-
solute risk aversion and a decreasing relative risk aversion as a function of the level
of wealth. The quadratic utility function possesses the undesirable characteristic
that the relative risk aversion is increasing with the wealth. With the negative ex-
ponential utility function, absolute and relative risk aversion levels are constant,
equal to λ . Only with the logarithmic utility function the relative risk aversion
level is decreasing with the wealth. However, with a logarithmic utility function it
may be difficult to model differences in risk aversion for different investors with
the same level of wealth. This can be achieved by a negative exponential utility
function, which also has a direct link with the mean-variance criterion.

It was demonstrated above that with a negative utility function, there is a direct
equivalence between expected utility maximization and mean-variance criterion.
In this, with an objective function expressed as x>µ − λ

2 x>Σx, the portfolio con-
sidered depends not only on parameters characterizing the distribution of returns
but also on the parameter of risk aversion λ . In this context, it may be difficult to
define a parameter of risk aversion for each investor. What has been proposed is
to obtain a set of optimal portfolios for different values of λ , the efficient frontier.
Investors choose a portfolio not by specifying directly their risk aversion parame-
ter but instead by choosing appropriate means and variances available through the
definition of the efficient frontier. To some investors this can be as much difficult
as the specification of a parameter of risk aversion.

We present in this section a different class of utility functions that can be linked
with the mean-variance criterion and only needs the specification of a parameter
that should be intuitive to each investor, a target return. We think that this utility
function can be useful to specific decision makers, namely, portfolio managers.

We specify a step utility function with an associated target return b. With so
much noise associated with the data gathered from financial markets, it is difficult
to specify meaningful utilities for a possible wide range of values that the variables
of interest can assume. With a portfolio manager whose performance is evaluated
at most at some discrete criteria, it is difficult to argue that he manages a given
portfolio through a continuous utility function.
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The form of the utility function presented here is given by

U (y,x,b) =

{
1, x>y≥ b
0, x>y < b

(11)

This utility function defines two patterns of utility, one associated with portfolio
returns, x>y, that are greater than the target return, b, the other to the ones that
are lower. In this utility function, instead of specifying a parameter that defines
directly the absolute or relative risk aversion, the decision agent only needs to
specify the target return.

As in previous cases, optimal portfolios are defined through the expected util-
ity maximization. Optimal portfolios are chosen by

maximize
x

E (U (y,x,b)) subject to
{

x>1 = 1;x≥ 0
}

(12)

Proposition 3 Supposing that the utility structure for a given decision agent in
financial markets is expressed by the function in (11), assuming that the vector
of returns follows a multivariate gaussian distribution with mean µ and covari-
ance Σ, there is a version of the mean-variance criterion that is equivalent to the
expected utility maximization criterion.

Proof. Without taking into account the constraints, defining F (·) the distribu-
tion function of portfolio returns with mean µp = x>µ and variance σ2

p = x>Σx,
the expected utility in (12) is given by E (U (y,x,b)) = 1−F (b). As F (·) is fully
defined by µp = x>µ and σ2

p = x>Σx, the expected utility can be obtained as a
function of these parameters and b, then this represents a specific version of the
mean-variance criterion.

Example 4 To illustrate the results presented in the proposition 3, let us suppose
that y is a vector containing two independent gaussian random variables with
means µ1 and µ2 and variances σ2

1 and σ2
2 . If the aim is to use the mean-variance

criterion by maximizing x>µ− λ

2 x>Σx for a given parameter of risk, λ , assuming
that the optimal portfolio is represented by x∗ = (x∗1,x

∗
2)
> with x∗2 = 1− x∗1, the

solution can be expressed as

x∗1 =
λσ2

2 +(µ1−µ2)

λ
(
σ2

1 +σ2
2
) (13)
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On the other hand, when the utility function in (11) is used instead, with the re-
maining assumptions, the optimal portfolio is defined in a way that

x∗1 =
(b−µ1)σ2

2
(b−µ1)σ2

2 +(b−µ2)σ2
1

(14)

In example 4, in both mean-variance criterion and expected utility maximiza-
tion through the step utility function, optimal portfolios can be obtained as a func-
tion of the parameters characterizing the distribution of returns plus an additional
parameter. In the original mean-variance criterion this parameter represents a
measure of risk aversion, which in some circumstances can be difficult to define.
With a step utility function, the additional parameter corresponds to the target
return, much easier to define.

A portfolio that has received some attention recently is the minimum variance
portfolio. This is obtained by minimizing 1

2x>Σx subject to x>1 = 1. The solution
x∗ of this problem is given by

x∗ =
Σ−11

1>Σ−11
(15)

This formulation derives from assuming that µ = 0 in the usual mean-variance
criterion. Less obvious is the result that a minimum variance portfolio is also ob-
tained by considering µ1 = · · · = µk. There is no possibility of exploring high
levels of returns. The optimal strategy is just to minimize the risk measured by
the variance of portfolio returns. These features are present in both models using
the original mean-variance criterion or the expected utility maximization criterion
through a step utility function. Although in certain aspects, both criteria are sim-
ilar when a gaussian distribution to returns is considered, the step utility function
has some intuitive appeal.

Example 5 (Continued from example 4) An important aspect of portfolio con-
struction is the possibility of diversification as a way of reducing the risks in-
volved. An important role is played by the correlation between different returns.
Assuming as in Example 4 a gaussian distribution, let y1 and y2 be correlated
with an associated covariance σ12. In the mean-variance criterion and step util-
ity function, optimal portfolios imply that

x∗1 =
λ
(
σ2

2 −σ12
)
+(µ1−µ2)

λ
(
σ2

1 +σ2
2 −2σ12

) (16)
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and

x∗1 =
(b−µ1)σ2

2 +(µ2−b)σ12

(b−µ2)σ2
1 +(b−µ1)σ2

2 +(µ1 +µ2−2b)σ12
(17)

respectively.

In this example, the role played by covariances can be taken into account, but
most of the relevant features are just a straightforward extension of the example
given previously. It can be argued that the step utility function in (11) gives es-
sentially the same result as the mean-variance criterion expressed in (1). In both,
there is a target return that is included into the analysis. However, we must notice
that there is a clear difference between both formulations. In the mean-variance
criterion, the target return is included in a constraint and when the problem is
feasible, the expected return for the optimal portfolio is equal to the target ex-
pected return. It is clear that the target expected return must be fixed between the
minimum and maximum expected returns considered individually.

When the step utility function is considered, the target return is a component
defining the utility function, which means that the target return can be viewed in
probabilistic terms. An optimal portfolio intends to maximize the probability of
obtaining returns higher than the target return. In this sense, there is no constraint
in the definition of the target return. What can happen is that sometimes it is
possible to find a portfolio with a high probability of obtaining returns higher
than the target return. Other times this is not possible. However, in both cases, it
is possible to define an optimal portfolio. These facts can easily be appreciated
through in the following example.

Example 6 As in example 4, assuming that y is a vector containing two inde-
pendent gaussian random variables with means µ1 and µ2 and variances σ2

1 and
σ2

2 . If a portfolio is chosen using the criterion expressed in (1), ignoring the con-
straint x ≥ 0 and µ∗p = b, the same target expected return as expressed for a step
utility function, the optimal portfolio x∗ = (x∗1,x

∗
2)
>, where x∗1 = 1− x∗2, can now

be defined as

x∗1 =
b−µ2

µ1−µ2
(18)

The optimal portfolio defined here can be compared with the one defined in (14),
which are clearly different. Another aspect must be noticed in this simple example,
in contrast to the one expressed in the example 4, variances play no role.
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A straightforward extension of the step utility presented in (11) is the one that
considers three instead of two patterns of utility. The objective of this extension is
to allow an asset that is available to all investors, with a very particular character-
istic of being riskless, to be included into the analysis. A third pattern of utility is
defined through the parameter α , where 0 < α < 1. If the return associated with
a riskless return is designed by r f , the utility function proposed here is defined as

U (x,y,α,b) =


1, x>y≥ b
α, r f ≤ x>y < b
0, x>y < r f

(19)

As this utility function is just an extension of the one expressed in (11), and also
defining F (·) as the distribution function associated with portfolio returns, the
expected utility can be expressed in general terms by

E (U (x,y,α,b)) = 1+(α−1)F (b)−αF
(
r f
)

(20)

Example 7 (Continued from example 4) Using the same assumptions as in ex-
ample 4 and also expressions (19) and (20), it is straightforward to show that an
optimal portfolio can be defined by

x∗1 =
µ1σ2

2 −µ2 (1−2α)σ12−bB(α−1)−
(
Br f +2µ1σ2

2
)

α

(µ2A+µ1B+bC)(α−1)+
(
µ2A+µ1B+ r fC

)
α

(21)

where A = σ12−σ2
1 , B = σ12−σ2

2 and C = σ2
1 −2σ12 +σ2

2 .

This last example illustrates the potential richness associated with this class
of utility functions, which associated with a gaussian distribution can produce
a larger variety of behaviours when compared with the standard mean-variance
criterion.

A straightforward extension of the results presented in this section is when
Student−t instead of gaussian distributions are considered to the returns. As with
the gaussian distribution, the expected utilities associated with (11) and (19) can
be expressed as E (U (y,x,b))= 1−F (b) and E (U (x,y,α,b))= 1+(α−1)F (b)−
αF
(
r f
)

respectively. In this case, it is also straightforward to obtain the optimal
portfolios. However, in contrast to the case where the returns follow a gaussian
distribution, no analytical results can be obtained and numerical methods must be
used.
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4 Dynamic portfolio allocation

In this section we make some tentative steps towards the definition of dynamic
portfolio allocation rules where the financial risk component assumes a predom-
inant role. Inserted in a Bayesian framework, dynamic portfolio allocation has
been analysed in Aguilar and West (2000) and Polson and Tew (2000). This prob-
lem can be inserted in a multi-period problem.

When the horizon established is at n, the aim is to define a series of functions
{x1, . . . ,xn−1} that form an optimal path with the aim of maximizing the expected
utility associated with the wealth at n. The idea is that information can be gathered
and the optimal path depend on this information. In Aguilar and West (2000)
the sequential approach is only dependent on the statistical procedure used to
estimate Σt . In a Bayesian approach, using a quadratic loss function, the estimate
of Σt is obtained by the mean of the posterior distribution of Σt |Dt , where Dt =

{y1, . . . ,yt} represents all the information until t. These authors have applied just a
simple set of sequential myopic portfolio allocation rules. Polson and Tew (2000)
applied a sequential portfolio framework but recognized the important role played
by portfolio constraints and estimation errors.

A common constraint associated with reallocations is the presence of trans-
action costs. The authors, even using daily returns to take into account charac-
teristics like fat tails and non-stationary distributions, in their simulations applied
reallocations only in biannual basis, recognizing that shorter periods might be
counterproductive due to the presence of transaction costs. Due to estimation er-
rors, it was recognized that the weights in portfolios can assume extreme values,
leading to less well diversified portfolios. This can be overcome by imposing
boundary constraints associated with those weights.

The application of static type of rules in a dynamic context when related with
portfolio allocation procedures can be an interesting statistical exercise, but, needs
some refinement when the aim is to define appropriate sequential portfolio allo-
cation rules. More recently new research has been produced associated with dy-
namic portfolio allocation (Skiadas, 2007; Yu et al, 2010; Bodnar et al, 2015a,b).
Dynamic portfolio allocation is substantially more harder to treat in comparison
with the static case, where a decision vector is defined. In a dynamic setting a set
of decision rules must be established. It is much more difficult to establish the
conditions for the returns and for the utility functions as a way of defining closed-
forms for such set of rules. For example, Bodnar et al (2015a) found such rules
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but assuming a quadratic utility function, which has some disadvantages as afore-
mentioned. Also, Bodnar et al (2015b) developed a set of results, but assuming
the predictability of the returns, which is also a very strong assumption. We build
on these, presenting some results associated with the dynamic portfolio allocation
and the relation of the mean-variance criterion with the successive application of
an one-period decision rule.

As was referred in the previous section, where a different class of utility func-
tions was proposed and an example was given related to a possible decision agent
willing to use these utility functions, we argue that the rules defined to the static
case need to be rethought when applied to a dynamic case, namely, in short term
settings.

Dynamic portfolio allocation allows the use of dynamic programming as well
as backward induction techniques. For a more detailed exposition of these tech-
niques, some of them applied to portfolio allocation problems; see DeGroot (1970),
Bertsekas (1976), Whittle (1986) and Cyert and DeGroot (1987). These tech-
niques are used to define decisions in a multi-period setting where between the
initial and end period, the redefinition of a decision taken previously can be per-
formed. With dynamic portfolio allocation, when the aim is to maximize the ex-
pected utility at the end of period n and restrictions related short-sales and trans-
action costs are not considered, for a certain class of utility functions with very
restrictive conditions, it can be demonstrated that the optimal path of decisions
coincides with a sequential set of myopic decisions. At each t−1 a prediction re-
lated to Σt is available and the portfolio is chosen as the aim was to maximize only
the expected utility at t. When more realistic scenarios are considered with short-
sales constraints as well as transaction costs, a sequential set of myopic decisions
may not be the optimal strategy.

Dynamic portfolio allocation is essentially a mult-iperiod decision problem.
This can be treated as an optimization problem under uncertainty, which has the
special characteristics related to the need to take into account the role played by
the risk and the possibility of information gathering during the decision process.
There are circumstances where a sequential set of decisions in a multi-period de-
cision context is equivalent to a sequence of myopic decisions. However, as we
will demonstrate below, this needs a specific formulation and small deviations
will yield a different optimal path when compared with a sequence of myopic
decisions.
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To demonstrate the differences between truly sequential procedures and a se-
quence of single-period decisions, we resort to concepts associated with dynamic
programming and backward induction. One of the most important concept in this
context is known as the Bellman’s Principle of Optimality, which can be expressed
as:

Definition 8 An optimal sequential decision policy to be evaluated at the period
n, supposing that a prior f (θ) was specified at 0, and with m < n, already m ob-
servations y1, . . . ,ym were obtained and the posterior distribution to θ |y1, . . . ,ym

was defined, then independently from the decisions already taken, the continua-
tion of the optimal policy must be the optimal sequential policy for the problem
beginning with f (θ |y1, . . . ,ym) as a prior for the remaining n−m stages.

Another important result is given in the following theorem which establishes
the recursive nature of an optimization process over time. The decision at time t
is denoted by xt and the partial sequence of decisions x1, . . . ,xt by χt . When an
horizon n is considered, the cost function can be considered as a function of the
decisions made over this period, C (x1, . . . ,xn−1) =C (χn−1).

Theorem 9 (Whittle 1986) Define the functions

C (χn−1, t) = inf
xt ,...,xn−1

C (χn−1) (22)

Then this obey the recursion

C (χn−1, t) = inf
xt

C (χn−1, t +1) (0 < t < n) (23)

with terminal evaluation

C (χn−1,n) =C (χn−1) (24)

Furthermore, the minimizing value of xt in (23) is the optimal value of xt for
prescribed χn−1.

We presented theorem 9 with a general formulation where C (·) is denoted as
a cost function, which can be generalized to utility or expected utility functions
and instead of infC (·) we have supU (·) or supE (U (·)).

The results presented above allow the definition of an important concept which
will be useful in an sequential portfolio optimization framework. This concept is
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known by backward induction. Supposing that the established horizon is n, and
a single-period type of analysis can be defined at n− 1 , moving backwards one
period, the decision can be defined at n− 2 assuming that the optimal decision
was also defined at t−1. This process can in principle be iterated until the period
1, defining in this way a sequence of optimal decisions x∗1, . . . ,x

∗
n−1.

In a portfolio allocation context, defining a target horizon n, the sequence of
decisions, x∗1, . . . ,x

∗
n−1, must be chosen as a way of maximizing the expected util-

ity at n, E (U (wn)). The procedures presented above associated with the recursive
nature of optimization over time can be redefined in is context as

φn−1 (xn−1,wn−1) = maximize
xn−1

E (U (wn)) (25)

φt (xt ,wt) = maximize
xt

E (φt+1 (xt+1,wt+1)) (26)

By starting with a single-period decision at n−1, and then moving backwards, a
set of rules can be defined which represent the optimal sequence of decisions to
be taken in a multi-period portfolio allocation problem.

In the statistical literature, or even in the financial literature, when portfo-
lio allocation problems are considered, rarely the expected utility maximization
paradigm is used directly and the mean-variance criterion is used instead. It was
already referred the setting needed to obtain an exact equivalence between portfo-
lios in the expected utility maximization and mean-variance criterion.

Proposition 10 Suppose that an investor expresses his preferences through a neg-
ative exponential utility function, U (wt) = −exp(−λwt), with λ > 0. If the in-
vestor has the possibility of reallocating at each t the portfolio defined at t − 1
and the portfolio is evaluated at n, the optimal sequential path corresponds to a
sequence of single-period decision rules if and only if a riskless asset is available
and the returns of the risky assets at each t are independent.

Proof. Let us consider a two-period setting and suppose that there are only
two assets available at each t, a risky asset with return yt and a riskless asset with
return r f . The decision at t is denoted by ut , which is the amount to invest in the
risky asset. The amount to invest in the riskless asset is given by wt −ut . In this,
the wealth at t is given by

wt = (wt−1−ut−1)r f +ut−1yt

= wt−1r f +ut−1
(
yt− r f

)
(27)
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Using the two-period setting, the definition of sequential set of decision functions
start by considering

maximize
u1

E (U (w2)) (28)

and then

maximize
u0

E
(

maximize
u∗1

E (U (w2))

)
(29)

With a negative exponential utility function, in (28), E (U (w2)) can be expressed
as

E (U (w2)) = E (−exp(−λw1))E
(
−exp

(
−λu1

(
y2− r f

)))
(30)

The value of u∗1 is not a function of w1 and in (29), assuming that the optimal deci-
sion is taken at 1, u∗0 is chosen as only if the maximization of E (−exp(−λw1)) is
considered, which is equivalent to consider two separate single-period decisions.
If the returns of risky assets were not independent, in this case y1 is not inde-
pendent of y2, and knowing that w1 = w0r + u0

(
y1− r f

)
, then the factorization

expressed in (30) would not apply, which means that u0 and u1 should be defined
jointly. When a riskless asset is not considered, using a portfolio with two risky
assets that at t the respective returns are denoted by y1t and y2t and the associated
with the asset 2 is denoted by u2t , in a two-period setting

w2 = w1y12 +u22 (y22− y12) (31)

as y12 is not independent from (y22− y12), it means that here the factorization
used in (30) cannot be applied.

Corollary 11 Using the conditions expressed in the proposition 10, the same type
of results as expressed in this proposition apply to the case of a logarithmic utility
function U (wt) = ln(wt).

Proof. This can easily be demonstrated modifying slightly the decision vari-
ables which are now the proportions of an initial wealth, wt , to be invested in
an asset xt . In this the wealth at 2 is given by w2 = w1

(
r f + x1

(
y2− r f

))
and

E (ln(w2)) = E (ln(w1))+E
(
ln
(
r f + x1

(
y2− r f

)))
, which imply that the results

presented in proposition 10 also apply here.

If the mean-variance criterion is used as the equivalent decision with a negative
exponential function, the procedures implemented Aguilar and West (2000) and
Polson and Tew (2000) did not use a truly sequential approach. There are two
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conditions that do not apply, lack of a riskless asset and lack of independence
between successive returns, which means that the procedures applied were just a
sequence of single-period decisions rules and not a multi-period decision, which
means that comparisons made using the wealth at the end of the simulation process
cannot interpreted properly, and does not direct us to the best portfolio allocation.

Usually the link between statistical models used to define the evolution of a
mean or variance processes and the models defined to portfolio allocation prob-
lems is made through a quadratic loss function. When the posterior distributions
to the parameters of interest are defined, using a quadratic loss function, the esti-
mates chosen are the means of the respective distributions.

This strategy has been implemented when long horizons but also short hori-
zons are considered in portfolio allocation problems. When there are changes
in the means of the returns the reallocations allow higher returns to be obtained.
However, when only the variances are considered, reallocations are needed to ad-
just the portfolios to the levels of risk desired, but they have not a major influence
on the expected returns of the portfolio. By comparing the forecasting ability re-
lated to the variance of returns through the final wealth obtained to the portfolio
seems to be a spurious comparison.

When only the volatility evolution is considered with the aim of controlling
the financial risk, other loss functions like a step utility function may be relevant
in this context of linking statistical models with financial decisions. These will al-
low that only significant increases in the volatility to be considered, which means
that reallocations need not to be so frequent. This possibly can alleviate the dif-
ficult task of establishing the link between a sequence of single-period portfolio
decisions and a multi-period decision.

5 Conclusions

The mean-variance criterion is widespread in many situation when portfolio al-
location decisions are considered. Even subject to criticisms, the main issue is
not the validity of the decisions proposed, but instead the oversimplified form that
the criterion is applied in practice. Ignoring the uncertainty associated with the
parameters, investors’ risk aversion and the time-varying distribution of the re-
turns, the lack of distinction between one- and multi-period decisions can lead to
meaningless results. However, for a given set of true values for the parameters, by
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defining the portfolios efficient frontier, for a specific investor, the optimal portfo-
lio must be represented by a point in such frontier.
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